Calculus refresher

Star

Integral calculus

Primitive function The primitive function of a function $f$, noted $F$ and also known as an antiderivative, is a differentiable function such that:

\[\boxed{F'=f}\]

Integral Given a function $f$ and an interval $[a,b]$, the integral of $f$ over $[a,b]$, noted $\int_a^bf(x)dx$, is the signed area of the region in the $xy$-plane that is bounded by the graph of $f$, the $x$-axis and the vertical lines $x=a$ and $x=b$, and can be computed with the primitive of $f$ as follows:

\[\boxed{\int_a^bf(x)dx=F(b)-F(a)}\]

Integration by parts Given two functions $f, g$ on the interval $[a,b]$, we can integrate by parts the quantity $\int_a^bf(x)g'(x)dx$ as follows:

\[\boxed{\int_a^bf(x)g'(x)dx=\big[f(x)g(x)\big]_a^b-\int_a^bf'(x)g(x)dx}\]

Primitive functions The tables below sum up the main functions associated to their primitives. We will omit the additive constant $C$ associated to all those primitives.

Rational primitive functions

Function $f$Primitive $F$
$\displaystyle a$$\displaystyle ax$
$\displaystyle x^a$$\displaystyle \frac{x^{a+1}}{a+1}$
$\displaystyle \frac{1}{x}$$\displaystyle \ln|x|$
$\displaystyle \frac{1}{1+x^2}$$\displaystyle \textrm{arctan}(x)$
$\displaystyle \frac{1}{1-x^2}$$\displaystyle \frac{1}{2}\ln\left|\frac{x+1}{x-1}\right|$

Irrational primitive functions

Function $f$Primitive $F$
$\displaystyle \frac{1}{\sqrt{1-x^2}}$$\displaystyle \textrm{arcsin}(x)$
$\displaystyle -\frac{1}{\sqrt{1-x^2}}$$\displaystyle \textrm{arccos}(x)$
$\displaystyle \frac{x}{\sqrt{x^2-1}}$$\displaystyle \sqrt{x^2-1}$

Exponential primitive functions

Function $f$Primitive $F$
$\displaystyle \ln(x)$$\displaystyle x\ln(x)-x$
$\displaystyle \exp(x)$$\displaystyle \exp(x)$

Trigonometric primitive functions

Function $f$Primitive $F$
$\displaystyle \cos(x)$$\displaystyle \sin(x)$
$\displaystyle \sin(x)$$\displaystyle -\cos(x)$
$\displaystyle \tan(x)$$\displaystyle -\ln|\cos(x)|$
$\displaystyle \frac{1}{\cos(x)}$$\displaystyle \ln\left|\tan\left(\frac{x}{2}+\frac{\pi}{4}\right)\right|$
$\displaystyle \frac{1}{\sin(x)}$$\displaystyle \ln\left|\tan\left(\frac{x}{2}\right)\right|$
$\displaystyle \frac{1}{\tan(x)}$$\displaystyle \ln|\sin(x)|$

Laplace transforms

Definition The Laplace transform of a given function $f$ defined for all $t\geqslant0$ is noted $\mathscr{L}(f)$, and is defined as:

\[\boxed{\mathscr{L}(f)=F(s)=\int_0^{+\infty}e^{-st}f(t)dt}\]

Remark: we note that $f(t)=\mathscr{L}^{-1}(F)$ where $\mathscr{L}^{-1}$ is the inverse Laplace transform.

Main properties The table below sums up the main properties of the Laplace transform:

Property$t$-domain$s$-domain
Linearity$\alpha f(t)+\beta g(t)$$\alpha F(s)+\beta G(s)$
$t-domain integral$$\displaystyle\int_0^tf(\tau)d\tau$$\displaystyle\frac{F(s)}{s}$
$t$-domain first derivative$f'(t)$$sF(s)-f(0)$
$t$-domain second derivative$f''(t)$$s^2F(s)-sf(0)-f'(0)$
$t$-domain $n^{th}$ derivative$f^{(n)}(t)$$s^nF(s)-s^{n-1}f(0)-...-sf^{(n-2)}(0)-f^{(n-1)}(0)$
$s$-domain integral$\displaystyle\frac{f(t)}{t}$$\displaystyle\int_s^{+\infty}F(\sigma)d\sigma$
$s$-domain first derivative$tf(t)$$-F'(s)$
$s$-domain second derivative$t^2f(t)$$F''(s)$
$s$-domain $n^{th}$ derivative$t^nf(t)$$(-1)^nF^{(n)}(s)$

Common transform pairs The table below sums up the most common Laplace transform pairs:

$t$-domain$s$-domain
$a$$\displaystyle\frac{a}{s}$
$t$$\displaystyle\frac{1}{s^2}$
$t^n$$\displaystyle\frac{n!}{s^{n+1}}$
$e^{at}$$\displaystyle\frac{1}{s-a}$
$\cos(\omega t)$$\displaystyle\frac{s}{s^2+\omega^2}$
$\sin(\omega t)$$\displaystyle\frac{\omega}{s^2+\omega^2}$
$\textrm{cosh}(at)$$\displaystyle\frac{s}{s^2-a^2}$
$\textrm{sinh}(at)$$\displaystyle\frac{a}{s^2-a^2}$

Main operations The table below sums up the main operations of the Laplace transform:

Operation$t$-domain$s$-domain
Unit step function$u(t-a)$$\frac{e^{-as}}{s}$
Dirac delta function$\delta(t-a)$$e^{-as}$
$s$-shift$e^{at}f(t)$$F(s-a)$
$t$-shift$u(t-a)f(t-a)$$e^{-as}F(s)$