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Chapter 6:  Model Building with Belief Networks and Influence Diagrams

Ross D. Shachter

Belief networks and influence diagrams are directed graphical models for representing

models of probabilistic reasoning and decision making under uncertainty.  They have

proven to be effective at facilitating communication with decision makers and with

computers.  Many of the important relationships among uncertainties, decisions, and

values can be captured in the structure of these models, explicitly revealing irrelevance

and the flow of information.  We explore a variety of examples illustrating some of these

basic structures, along with some algorithms that efficiently analyze their model

structure.  We also show how algorithms based on these structures can be used to resolve

inference queries and determine the optimal policies for decisions.

Keywords:  Decision analysis; graphical models; influence diagrams; belief networks;

bayesian networks; causal networks; probabilistic inference; model structures

We have all learned how to translate models, as we prefer to think of them, into

arcane representations that our computers can understand, or to simplify away key

subtleties for the benefit of clients or students.  Thus it has been an immense pleasure to

work with graphical models where the representation is natural for the novice, convenient

for computation, and yet powerful enough to convey difficult concepts among analysts

and researchers.

The graphical representations of belief networks and influence diagrams enable us

to capture important relationships at the structural level of the graph where it easiest for
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people to see them and for algorithms to exploit them. Although the diagrams lend

themselves to communication, there remains the challenge of synthesis, and building

graphical models is still a challenging art.  This chapter presents many examples of

model structures within these representations and some of their most important

properties.  It is designed for students and practitioners with a basic understanding of

decision analysis.

Figure 1.  Different models for contract bidding

An example illustrates the value of a clear representation.  For many years the

accepted model for contract bidding (Friedman, 1956) corresponded to the network

shown in Figure 1a.  Buried in the mathematics was an incorrect assumption that if we

know our bid then the bids of our competitors provides us no new information about the

value of the contract.  It was only after analyzing bidding patterns that had cost oil

companies many extra millions of dollars in Gulf Coast leases that Capen, Clapp, &

Campbell (1971) discovered the mistake and presented the model corresponding to the

network shown in Figure 1b.  In their model, the value of the contract renders our bid and

the bids of our competitors irrelevant to each other, assuming no collusion.  As a result

we have the “winner’s curse,” because observing that we won the bid makes it more

likely that our bid is in error.  In hindsight and with the insights from graphical models, it

is disturbing that the error went undetected for so many years.
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The use of a directed graph factorization of a joint distribution is usually credited

to (Wright, 1921, 1934) and (Good, 1961a, 1961b), although it was first fully described

by (Howard & Matheson, 1984; Miller, Merkofer, Howard, Matheson, & Rice, 1976).  It

came to computer science and statistics attention through (Kim & Pearl, 1983; Lauritzen

& Spiegelhalter, 1988; Pearl, 1988).  Since then, there have many significant

developments in model building and analysis, particularly with the use of undirected

graphs, but our focus here is on the basic models in directed graphs.

In the next section we present examples of probabilistic models represented by

belief networks, followed by a section featuring algorithms to explore the belief network

structure and use simple directed graphical transformations to analyze inference queries.

The final two sections present examples of decision models represented by influence

diagrams, and algorithms and directed transformations to analyze them.

1.  Probabilistic Models

In this section we consider examples of probabilistic models represented by belief

networks.  Such networks are known by many names, including Bayesian networks,

relevance diagrams, causal probabilistic networks, and recursive causal models.  The

structure of the graph captures irrelevance information about the underlying probabilistic

model through deterministic variables and the arcs that could be present but are missing.

The data associated with the nodes in the graph provides a complete probabilistic

description of the uncertainties in the model and allows an updating of that description as

variables are observed.
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The structure of a belief network B = (U, A, F | &) consists of undirected nodes U,

directed arcs A between those nodes, and a subset F of the nodes that are determined

(functionally) by other nodes.  Corresponding to each node j is an uncertain variable Xj,

and XJ refers to the variables corresponding to the set of nodes J.  The background state

of information & represents the perspective of the decision maker (DM) at a point in

time.  It captures her beliefs, biases, and life experiences in the context of the current

situation.

Consider the belief network shown in Figure 2a, representing a contest in which

the prize is determined by two coin spins.  Spin 1 and Spin 2 are oval probabilistic nodes

and Prize is a double oval deterministic node.  If both spins are observed then we will

know the prize with certainty, but if they are not then we might be uncertain about Prize.

The background state of information & is represented by a dark oval node, which might

be labeled with the date and/or the DM’s name.  In Figure 2a, Spin 1 and Spin 2 direct

arcs toward Prize, so they are its parents and it is their child.  We denote the parents of

node j by Pa(j) and following the familial analogy, the set of nodes along directed paths

from node j are called its descendants, De(j).

Figure 2.  Different models for a coin spinning contest

A belief network B is completely specified if data is assigned to each node in the

network.  For each node j there is a set of possible values 

€ 

x j ∈ Ω j , and we denote the
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possible values for a set of variables J by 

€ 

xJ ∈ ΩJ = ×
j∈J
Ω j .  If 

€ 

X j  has been observed,

then it only has only possible value 

€ 

x j .  We assume in this chapter that 

€ 

Ω j  is finite, but

most results can be extended to continuous variables as well.  For each 

€ 

X j  there is also a

conditional probability distribution for 

€ 

X j  given its parents 

€ 

XPa( j ) (and &),

€ 

P{X j | XPa( j ),&}.  If j is a deterministic variable, 

€ 

j ∈ F , then this conditional distribution

can be represented by a function, 

€ 

X j = f j (XPa( j ) |&). If 

€ 

X j has been observed then this

conditional distribution is a likelihood function, 

€ 

P{X j = x j | XPa( j ),&} .

It is sometimes tempting to construct a model with a directed cycle, that is, a path

following directed arcs taking us back to where we started.  Although work has been

done to analyze such models, any joint probability distribution can be represented

without a directed cycle and we will therefore assume here that there is no such cycle in

the network.  These cycles can arise when we have a dynamic equilibrium process, such

as the relationship between prices and quantities shown in Figure 3a, which can be

represented instead as a sequence of prices and quantities over time as shown in Figure

3b.  A simultaneous system, such as the one shown in Figure 3c, can usually be

triangulated into the system shown in Figure 3d.  The cases where it cannot be

triangulated are the same as for deterministic systems, that is, when the system is either

inconsistent or indeterminate.

When there is no directed path in the network, there must be at least one ordered

list of the nodes such that any descendants of a node follow it in the list.  Such a list can

be constructed in linear time by iteratively selecting a node without a parent and deleting

the arcs it directs to its children.  For example, in the belief network shown in Figure 2a
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there are two ordered lists, (Spin 1, Spin 2, Prize) and (Spin 2, Spin 1, Prize), but there is

only one for the network shown in Figure 3d, (X, Y, Z).

Figure 3.  Directed cycles are not permitted

It is convenient to think in terms of an assessment order of the uncertain variables,

an ordered list such that the conditional probability of 

€ 

X j  given the variables preceding it

in the list is obtained by conditioning 

€ 

X j  on its parents (and the background state of

information) alone,   

€ 

P{X j | X1,K,X j−1,&} = P{X j | XPa( j ),&}, where we have assumed

that the assessment order is 1, 2, … .  The conditional irrelevance (or independence)

embodied in the belief network B is satisfied by a joint probability distribution, and the

distribution is said to admit a directed factorization with respect to B, if 

€ 

X j  is a

deterministic function of 

€ 

XPa( j ) for each j in F and

€ 

P{XU |&} = P{X j | XPa( j ),&}
j∈U
∏ .

Given the joint probability distribution

€ 

P{XU |&} for 

€ 

XU , 

€ 

XJ  and 

€ 

XL  are said to be

probabilistically irrelevant (or independent) given 

€ 

XK  (and &) if

€ 

P{XJ | XK ,XL ,&} = P{XJ | XK ,&}.
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Given the belief network structure B and any sets of nodes J, K, and L, 

€ 

XJ  and

€ 

XL  are irrelevant in B given 

€ 

XK  if 

€ 

XJ  and 

€ 

XL  are probabilistically irrelevant given 

€ 

XK

(and &) for any joint probability distribution 

€ 

P{XU |&} that admits a directed

factorization with respect to B.

Therefore, if 

€ 

XJ  and 

€ 

XL  are irrelevant in B given 

€ 

XK  then, no matter what

probability distributions are assigned consistent with the network structure, they are

probabilistically irrelevant, and we are assured that, having observed 

€ 

XK  we can learn

nothing about either 

€ 

XJ  or 

€ 

XLby observing the other.  This condition is equivalent to 

€ 

X j

and

€ 

Xl  are irrelevant in B given 

€ 

XK for all j in J and l in L, even though such a

decomposition is not true in general for probabilistic independence (Pearl, 1988).

As a result, the belief network makes strong assertions about conditional

irrelevance but weak ones about relevance, based on which nodes are deterministic and

which arcs are present.  Each deterministic node and missing arc implies probabilistic

irrelevance, while there might always be additional probabilistic irrelevance not captured

in the belief network structure.  Thus we can be sure which irrelevance statements must

be true and what node data is not needed to resolve a query, but we can only say which

relevance statements might be true and what node data might be needed.  In the next

section we will present an algorithm to answer these questions.

To explore this difference between probabilistic irrelevance and irrelevance in B,

consider the network for the coin spinning contest shown in Figure 2a.  DM believes that

the two spins are irrelevant and that the prize is completely determined by the two spins,

and will only consider probability distributions consistent those beliefs.  If she also

believes that the spins are both equally likely to land “heads” or “tails” and that the prize
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will be determined by whether the two coins match, then the network shown in Figure 2b

would also be valid, since winning the prize and either coin spin are probabilistically

irrelevant in that case.  Even in that case, the network shown in Figure 2a still seems

more informative!  Note that probabilistic independence cannot be decomposed in the

same way as irrelevance in B, since seeing both coins determines whether we win the

prize, even when they each provide no information about the prize.

Now that we have a formal definition of irrelevance in B, we can apply it to the

belief network shown in Figure 4.  The is the simplest example of conditional irrelevance,

since the missing arc from Stock Value Yesterday to Stock Value Tomorrow assures us

that, no matter what conditional distributions DM uses consistent with the diagram,

yesterday’s value and tomorrow’s value are irrelevant given today’s.  This embodies the

“Markov property,” namely, the present stock value tells us everything we need to know

from the present and the past to predict the future.  A Markov process, whether it is

stationary or not, can be represented by such a “sausage link” belief network, with a node

for each stage or time period.

Figure 4.  Markov chain for stock values

Another fundamental example involves repeated trials as represented by the belief

networks shown in Figure 5.  If DM spins a coin n times and observes each time whether

it lands “heads” or “tails” she might be tempted to represent this experiment by the belief

network shown in Figure 5a, in which all of the different spins are irrelevant (given &).

However, many coins are not equally likely to land “heads” or “tails” after being spun
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because of precession, and there is a real opportunity to learn about Spin n from the first

n-1 spins.  Therefore, she might prefer the belief network shown in Figure 5b, in which

the spins would be irrelevant if she knew some properties of the coin (and &), in this case

the probability that it will land “heads” after being spun.  This network allows her to

learn about the coin from the spins she has observed in order to revise her beliefs about

the other spins.  Of course, our interest in this model does not arise from a desire to spin

coins but because its structure shows up in so many important problems.  Consider an

experimental drug being tested on some patients, represented by the belief network

shown in Figure 5c.  If DM assumed that the patients’ recoveries were irrelevant then

there would be no benefit to knowing what happened to the earlier patients before she

received (or administered) the treatment.

Figure 5.  Repeated trials that are conditionally irrelevant

The belief network facilitates the updating of DM’s beliefs about all of the

variables when she obtains evidence.  Evidence is represented as the observation of one

of the variables in the network.  Consider the network shown in Figure 6a, which

represents how the alignment of a production process affects the quality of the product.  It

is possible to sample some of the product for testing in order to learn whether the process

is still in alignment.  If DM observes the test results, she can update her beliefs about
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alignment and make a decision whether to ship the product.  We represent the observed

variable with shading and recognize that it now only has one possible value—the value

observed.  (If it had children in the network, then she could also cut those arcs, since the

children can condition on the observed value for this variable.)

Figure 6.  Evidence enters through its likelihood of observation

Treating a variable as observed is absolute.  If DM is not sure that it has that

value, then she can represent that uncertainty by creating a new node, such as Report in

the network shown in Figure 6b, to represent what she has observed.  In this case, she

would need to specify how likely this report would be for all of the possible values of the

sample test results.  Many famous paradoxes are avoided by this simple mechanism of

observation rather than directly updating DM’s beliefs about Alignment.  In fact, she is

using this mechanism whether she observes Sampled Product or Report.  Of course, if

she is not sure what is in the report, then she can create still another node, its child, that

she has observed instead.

The DM’s background state of information & is a special case of an observed

variable.  There is only one possibility for & in the network and everything is implicitly

conditioned on it.
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In this example and the ones that follow, the observed node can be considered an

“effect” and its parent(s) are the “causes.”  Most updating situations in belief networks

involve observing a effect child to learn about a causal parent.  This is because it is

usually more natural to construct a belief network in the causal direction and because we

often obtain evidence about a variable of interest through its effects (Shachter &

Heckerman, 1987).

We saw in the coin spinning contest example that two spins DM considered

irrelevant could become relevant if she observed a prize determined by them.  This

situation can arise whenever she observes a common descendant of uncertainties that she

had believed to be irrelevant.  Suppose DM is visiting a friend’s house and suddenly

starts sneezing.  She worries she is coming down with a cold until she notices some

scratches on the furniture.  If her friend has a cat, her sneezing might be due to her allergy

to cats rather than a cold (Henrion & Druzdzel, 1990).  The belief network shown in

Figure 7 represents this story.

Figure 7. Observing a common child can make irrelevant uncertainties relevant

Before she started sneezing, DM thought that Cold and Cat Allergy were

irrelevant and that observing one would tell her nothing about the other.  Once she

observes Sneezing, however, they become relevant—if she observed that one were absent

then the other would become more likely.  When she also observes Scratched Furniture,
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Cat and Cat Allergy become more likely, and Cold becomes less likely than it was after

she first observed Sneezing.

We will see a general algorithm for recognizing irrelevance in the next section,

but this example provides some intuition.  In some cases, an observation creates

irrelevance while in other cases it can eliminate it.  Before she observed Sneezing, Cold

and Scratched Furniture were irrelevant, but once she sneezed, they became relevant.  On

the other hand, if she then also observed Cat or Cat Allergy then Cold and Scratched

Furniture would again be irrelevant, since the scratches on the furniture are relevant to

cold only because they suggest to us the presence of a cat and our cat allergy.

Another common and important model is the partially observable Markov chain,

as shown in Figure 8, in the context of an optical character recognition system.  The

system observes pen strokes and tries to infer a sequence of characters, using a Markov

model to capture the relevance of adjacent characters.  The strokes for each character

represent an imperfect observation of the character.  Adding more layers of meaning

could refine this model, much as people employ in deciphering handwriting, but it would

become considerably more complex.

Figure 8. Partially observable Markov chain

The belief network structure shown in Figure 8 also corresponds to Kalman filters

and hidden Markov models.  The models all feature a Markov process backbone with
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imperfect observations of the Markov variables.  Usually they are used to model a

process over time but they can also be applied to other sequences as well.

Figure 9. Fault belief network

Many applications involve whether a critical system is functioning.  Suppose a

security system has two kinds of sensors, one for intrusion and one for motion, both

sharing a common power supply.  The system can function as long as one of the sensors

and the master control are working.  There are potential failures of all of these systems in

the event of an earthquake or a fire.  A belief network for this example is shown in Figure

9, where the deterministic nodes have “and” and “or” functions.  Note that if the DM

could observe Motion Sensor, Power Supply, Intrusion Sensor, and Master Control, then

she would know the values of all of the deterministic variables.  If she observed that the

intrusion sensor were not working, she could update her beliefs about all of the other

variables, both to know whether the overall system is functioning and how to plan repairs

for the parts that have failed.  At that point, Intrusion Detector would have only one

possible value and the arc to its child can be cut.  Even though it is a deterministic

function of its parents, there are multiple values of the parents that might yield that value,

so the diagnostic task is not deterministic in general, even for a system with determinacy.
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Traditionally, these systems have been modeled using fault trees, which must be

augmented to capture common cause failure, the relevance among components.  The

belief network makes it easier to represent these relationships.  There are three

fundamentally different kinds of tasks that one can perform using this type of network.

First is prediction – given the observations available (and &), how likely is the system to

remain effective until repairs are completed.  Second is diagnosis – given those same

observations, which components are likely to have failed.  Both of these tasks lead to

decisions about information collection, such as troubleshooting, and repair strategies.

Third is system design – looking prospectively at the response of the system to internal

and external failures, such as whether there is sufficient redundancy to deal with the

impacts of fires or earthquakes.

In the next section we will see how we can analyze these belief networks, to

understand the implications of the model structure and how we can update our beliefs.

2.  Analyzing Probabilistic Models

Much of the popularity of belief networks arises from our increasing

computational power and the development of efficient algorithms.  This section presents

some of those algorithms, primarily to determine the implications of our belief network

structure for irrelevance and data requirements, but also to show how we could update

our beliefs after making observations.  There is a large and growing literature on the

efficient solution of these inference problems, mostly using undirected graphical

structures and beyond the scope of this chapter (Jensen, Lauritzen, & Olesen, 1990;

Lauritzen & Spiegelhalter, 1988; Shenoy & Shafer, 1990).  Our focus instead will be on
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how we can explore and modify the belief network structure in order to gain some

intuition for modeling and analysis.

A useful and efficient algorithm, Bayes-Ball, identifies for any query

€ 

P{XJ | XK ,&} which variables in a belief network must be irrelevant to 

€ 

XJ  given 

€ 

XK

(and &), and which conditional distributions and observation might be needed to resolve

the query (Shachter, 1998).  We call the information that might be needed the requisite

distributions and requisite observations for J given K.  The Bayes-Ball algorithm runs in

time linear in the size of the belief network and is based on the metaphor of a bouncing

ball.  The ball sometimes bounces off a node, sometimes passes through it, and

sometimes gets stuck, depending on the type of node and whether the ball is approaching

the node from a parent or from a child, as shown in Figure 10.

Figure 10.  Bayes-Ball

The Bayes-Ball Algorithm explores a structured belief network  B = (N, A, F | &)

with respect to the expression 

€ 

P{X j | XK ,&} and constructs the sets of irrelevant and

requisite nodes.

1. Initialize all nodes as neither visited, nor marked on the top, nor marked on

the bottom.
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2. Create a schedule of nodes to be visited, initialized with each node in J to be

visited as if from one of its children.

3. While there are still nodes scheduled to be visited:

a. Pick any node j scheduled to be visited, mark it as visited (√) and remove

it from the schedule.

b. If 

€ 

j ∉ K  and j was scheduled for a visit from a child:

 i. If the top of j is not yet marked, then mark its top and schedule

each of its parents to be visited;

 ii. If 

€ 

j ∉ F and the bottom of j is not yet marked, then mark its

bottom and schedule each of its children to be visited.

c. If j was scheduled for a visit from a parent:

 i. If 

€ 

j ∈ K  and the top of j is not yet marked, then mark its top and

schedule each of its parents to be visited;

 ii. If 

€ 

j ∉ K  and the bottom of j is not yet marked, then mark its

bottom and schedule each of its children to be visited.

4. The irrelevant nodes, 

€ 

NI (J |K) , are those nodes not marked on the bottom.

5. The requisite distribution nodes, 

€ 

NP (J |K), are those nodes marked on the

top.

6. The requisite observation nodes, 

€ 

NE (J |K), are those nodes in K marked as

visited.

An example of the Bayes-Ball Algorithm is shown in Figure 11 for the query

€ 

P{X10,X11 | X1,X4,X7,&}.  The algorithm determines irrelevant set 

€ 

NI ={1, 2, 3, 4, 7,
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12}, requisite distributions 

€ 

NP={3, 5, 6, 7, 10, 11, 13} and requisite observations

€ 

NE={4, 7}.  The non-requisite nodes 

€ 

N − (NP ∪NE )={1, 2, 8, 9, 12} could be

deleted from the belief network and we would still be able to resolve the query.

Figure 11.  Bayes-Ball Algorithm example

Probabilistic inference can be performed by graphical operations on the belief

network that alter the ordered list of the requisite nodes.  This allows us to transform

from the assessment order ideal for model construction and communication with DM to

the ordered list needed to resolve a query, such as 

€ 

P{XJ | XK ,&}.  Once the nodes K

(some of which might already be observed) are the only other parents of the nodes J, we

have solved the problem (Shachter, 1988).

Consider the belief network shown in Figure 12a representing an HIV test.  HIV+

is an uncertain variable indicating whether DM has been infected with the HIV virus and

“HIV+” is her test result.  Her test result and Risk Behavior are irrelevant given her

infection status, and the type of Test performed is irrelevant to both her risk behavior and

her infection status, at least until she observes her test result.  Suppose she would prefer
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the ordered list (Risk Behavior, Test, “HIV+,” HIV).  Bayes-Ball can be used to find the

requisite observations for P{“HIV+” | Risk Behavior, Test, &} and both Risk Behavior

and Test are requisite.  All of the variables that precede HIV are also requisite, so we

obtain the belief network in Figure 12b.  This is intuitive, since the type of test is now

relevant to her infection status, and her risk behavior is relevant to the test results.

Figure 12.  HIV test and arc reversal

This graphical transformation is called arc reversal.  The arc from node i to node j

is reversible if there is no other directed path from i to j; if there were, then an arc from j

to i would create a directed cycle. Reversing the direction of the arc so that it goes from j

to i is exactly the same operation as flipping a probability tree.  In the process, the two

nodes inherit each other’s parents, so arc reversal can add arcs as shown in Figure 13a.

The first step is to compute the joint distribution of the two corresponding variables,

€ 

P{Xi,X j | XJ ,XK ,XL ,&} = P{Xi | XJ ,XK ,&}P{X j | Xi,XK ,XL ,&},

where 

€ 

J = Pa(i) − Pa( j) , 

€ 

K = Pa(i)∩ Pa( j), and 

€ 

L = Pa( j) − ({i}∪ Pa(i)) .

From that joint distribution we can compute new distributions for 

€ 

Xi  and 

€ 

X j ,

€ 

P{X j | XJ ,XK ,XL ,&} =
xi ∈Ω i

∑ P{Xi,X j | XJ ,XK ,XL ,&}

and

€ 

P{Xi | X j ,XJ ,XK ,XL ,&} =
P{Xi,X j | XJ ,XK ,XL ,&}
P{X j | XJ ,XK ,XL ,&}

.
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Figure 13.  The three kinds of arc reversal

There are two special cases for arc reversal.  The first, evidence reversal, arises

when 

€ 

X j  has been observed and thus has only one possible value.  The only difference is

that there is no need for an arc from j to i afterward as shown in Figure 13b.  The same

reversibility condition applies nonetheless, since any other path from i to j would go

through the set L of nodes becoming parents of i, thus creating a directed cycle.  The

other special case, deterministic propagation, arises when i is a deterministic node.  In

this case, there is no uncertainty about 

€ 

Xi  given 

€ 

XPa( i), so there is no need to add

additional parents, either j or L, as shown in Figure 13c.  In this case there is no

reversibility condition at all since the only arcs being added are from J to j replacing the

arc from i to j, and corresponding to the substitution,

€ 

P{X j | XJ ,XK ,XL ,&} = P{X j | fi(XJ ,XK ),XK ,XL ,&}  .

Given arc reversal, computing 

€ 

P{XJ | XK ,&} is then a matter of reordering the

graph so that the nodes in K precede the nodes in J and they both precede the other nodes.
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In fact, once a node outside of 

€ 

J∪K  has no children, it can be removed from the

network as a barren node.  Any node outside of 

€ 

J∪K  can be removed from a model by

reversing the arcs to its children in order until it is barren (Shachter, 1988).

3.  Decision Models

In this section we consider examples of decision models represented by influence

diagrams.  Influence diagrams express choices and preferences as well as beliefs and

information.  They consist of belief networks with two additional node types,

representing decisions and criteria for making choices.  In addition to the beliefs at the

time the network is constructed, the influence diagram represents the prospective

observation of variables that are still uncertain.

The structure of an influence diagram consists of nodes, arcs, and &, as in the

belief network but now there are additional types of nodes.  Decision nodes D correspond

to variables complete under DM’s control, and value nodes V represent the criteria she

uses to make those choices.  Consider the influence diagram shown in Figure 14a,

representing an investor’s decision problem.  She has complete control over Stock

Purchase and she will choose it to obtain Profit that will maximize the expected value of

her Satisfaction.  Her decision variable Stock Purchase is drawn as a rectangle and her

value variable Profit is drawn as a rounded rectangle.  (In the literature, value variables

are drawn in a variety of shapes.)
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Figure 14.  Investor’s decision opportunity

An influence diagram is completely specified if possible values are assigned for

each node and conditional probability distributions for all the nodes in U and V.  The

value variables V are assumed to be deterministic functions of their parents, just like the

uncertain variables in F, and we assume that the total value is the sum of all of the value

functions.  (Some results still apply even if the value functions are multiplied instead of

added.)  Conditional probability distributions are not needed for the decision nodes D –

these will be determined so as to maximize the expected total value.

We assume that all of the decision variables can be ordered in time, d1, d2, …, dm,

and that the parents of each decision variable represent all of the other variables that will

have been observed before that choice must be made.  We assume the no forgetting

condition, that the parents of each decision include all earlier decisions and the variables

observed before them (Howard & Matheson, 1984).  As a result, we can partition the

uncertainties into m+2 sets, decision windows W0, … , Wm+1, where the uncertain

variables in W0 have already been observed, those in Wi will be observed before the

choice of di but after the choice of di-1, and those in Wm+1 will not be observed before any

of the decisions, as shown in Figure 15.  The windows can be thought of as one-way, so

future decisions can observe anything from earlier windows but nothing from the future.

More formally, 

€ 

Pa(d1) =W0∪W1 and 

€ 

Pa(di) = Pa(di−1)∪{di−1}∪Wi  for i=2, …, m.  To
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reduce clutter in the diagram, arcs into decisions will not be drawn when they can be

inferred by no forgetting.

Figure 15.  Decision windows and the no forgetting condition

Consider again the influence diagram drawn in Figure 14a.  As stated above, DM

completely controls the decision Stock Purchase so as to maximize the expected value of

her Satisfaction.  This is a causal notion, because she is convinced that her choice will

have some impact or effect on the world, in this case on Profit.  She anticipates the

prospect of satisfaction based on that profit.  Therefore, her choice of stocks affects every

descendant of her decision, her satisfaction as well as her profit.  If she could not affect

any of her value variables by making her choice, why would she devote any attention to

that choice?  Now, suppose that she wants to base her purchase decisions on factors

besides profit, that is, she is willing to forgo some potential profit to own companies she

prefers for other reasons.  The influence diagram shown in Figure 14b represents this

situation, since Stock Purchase and Satisfaction are no longer irrelevant given Profit.

Now that we have seen the role that cause plays in influence diagrams we can

recognize a particular type of belief network called a causal network, in which all of the

arcs have a causal interpretation (Heckerman & Shachter, 1994; Pearl, 2000).  A belief

network is said to be a causal network if, were DM able to completely control one (or

more) of the uncertain variables, the influence diagram obtained by cutting any incoming
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arcs from parents, and changing it (them) to decision node(s), is valid.  (We should also

have a meaningful value node, too, although this is not usually mentioned.)

Figure 16.  Causal networks  are special belief networks

Consider the belief networks shown in Figure 16a and16b.  A full gas tank is

necessary to complete the mission and the gas gauge indicates whether the tank is full.

Probabilistically, these two networks are indistinguishable, representing identical

irrelevance relationships.  However, they have quite different meanings as causal

networks.  If we could control the tank in the first network we obtain the influence

diagram shown in Figure 16c.  Filling (or emptying) the tank would affect the gauge and

the mission.  If, instead we control the gas gauge, we get the influence diagram shown in

Figure 16d.  Manipulating the gauge has no affect on either the tank or the mission.  On

the other hand, if we could control the gauge in the second belief network we get the

influence diagram shown in Figure 16e.  According to this diagram, manipulating the
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gauge affects both the tank and the mission. Clearly, the belief network shown in Figure

16a is a causal network and the one shown in Figure 16b is not.

The influence diagram shown in Figure 17a represents a prototypical decision

opportunity.  The DM is choosing a vacation activity but her favorite activity if the

weather were nice would not be her choice if the weather were bad.  She can obtain a

long-range weather forecast before she has to put down a deposit on her choice. She has

no ability to change the weather, but she does have an opportunity to learn about it before

she makes her choice.  Her satisfaction is based on the weather and her choice of activity.

Figure 17.  Choosing a vacation activity

The arc from Weather Forecast to Vacation Activity is an informational arc,

indicating that she will observe the forecast before she must commit to an activity.

Because the informational arc is explicit rather than implicit, as it is in decision trees, the

assessment order does not represent the order in which uncertain variables are observed.

Thus, even though Vacation Activity is a descendant of Weather, there is no claim that

Weather will be known at the time of Vacation Activity.  This also means that this
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problem cannot be represented as a decision tree without reversing the direction of the arc

from Weather to Weather Forecast to obtain the influence diagram shown in Figure 17b.

It is common to ask what a decision “depends upon,” and on reflection it is clear

that all of the elements of the influence diagram contribute to making a good decision.

But the arcs do not indicate what the decision “depends upon,” any more than they

represent a flow chart.  The arcs into the decision represent what other variables will have

been observed before the choice is made and the arcs into the value node(s) indicate what

criteria should be used in making that choice, all based on our background state of

information &.

Consider now the influence diagram shown in Figure 17c.  It only differs from the

one shown in Figure 17a by the deletion of the informational arc from Weather Forecast

to Vacation Activity.  If the forecast were available at no cost then DM would be at least

as well off in the earlier situation as in this one.  Observing Weather Forecast cannot

make her worse off, since it gives her the opportunity to make a different choice of

activity for each possible forecast instead of having to make just one choice.  If she chose

the same activity regardless which forecast she observed then she should be indifferent

between the two situations and there is no benefit to making the observation.  The

difference in value between these two diagrams represents the value to DM of observing

Weather Forecast before making the Vacation Activity decision.

Consider instead the influence diagram shown in Figure 17d.  It only differs from

the one shown in Figure 17a by the addition of the informational arc from Weather to

Vacation Activity.  We saw that this additional information cannot make DM worse off,

and in this particular case we would expect her to be much better off, since the weather is
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the key uncertainty in making her decision.  This new diagram represents perfect

information or clairvoyance in her choice and we can measure that change by the

difference in the value of the two diagrams.  If the value for each diagram represents her

willingness to pay to be in that decision situation then the difference represents her

willingness to pay a clairvoyant to tell her what the weather would be before she makes

her choice.  Of course, such a clairvoyant does not exist in real life, but the value

provides an upper bound on the amount she should pay for any information about the

weather.  In fact, she might achieve the same benefit by choosing a resort that offers a

variety of different activities that she enjoys, so that she can make her choice each day

knowing what the weather will be.  In this particular example the value of clairvoyance is

clearly the benefit of observing Weather before choosing Vacation Activity, but when

there are multiple decisions and uncertain variables, there can be multiple values of

clairvoyance, depending on which variables will be observed and when they will be

observed.

We can extend these concepts to situations with multiple decisions and, in

particular, a decision about collecting information.  The influence diagram shown in

Figure 18 represents a decision by a patient with suspected Herpes encephalitis.  Left

untreated, the patient is unlikely to survive, but the standard therapy, treatment with

vidarabine, has serious side effects.  To test for the presence of the disease, doctors can

perform a biopsy, removing some of her brain tissue for examination, a procedure that

can also have serious side effects.  There are two decisions, Perform Biopsy? And Treat

with Vidarabine?, both posing potential complications.  The key uncertainty is Herpes

Encephalitis, and she cares about her Quality of Life.  Her treatment decision affects her
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quality of life both through possible Recovery and Severe Complication, while her biopsy

decision affects it directly through Severe Complication and indirectly through the

information available about Herpes Encephalitis when the treatment decision is made.

(If she does not perform the biopsy then Biopsy Indication will have the value “not

available.”)  Note that if the arc from Perform Biopsy? to Treat with Vidarabine? had

been omitted, it would have been inferred through no forgetting.

Figure 18.  Treating suspected Herpes encephalitis

In this situation, there is considerable value to clairvoyance on Herpes

Encephalitis? before Treat with Vidarabine?, since otherwise brain cells might be taken

from DM to gather information.  In medical problems, the cost of testing can be

expensive in dollars but also in terms of pain, morbidity, and mortality, both from the test

itself and from the delay in treatment.  In this influence diagram it is not possible to

determine the value of clairvoyance on Recovery before Treat with Vidarabine?, because

an arc from Recovery to Treat with Vidarabine? would create a directed cycle.  Recovery

is affected by her treatment choice, so it would not make sense for her to know whether

she recovers before making that choice.  We resolve this problem by adding more data

and structure to the influence diagram until it is in canonical form, as explained below.
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Another example of an information gathering decision is faced by an oil

wildcatter DM considering a potential drilling location (Raiffa, 1968), represented by the

influence diagram shown in Figure 19.  The wildcatter must choose whether to perform a

seismic test and then whether to drill, and her key uncertainty is the amount of oil.  There

are costs for testing and drilling and there are potential revenues if she drills and finds oil.

Before she chooses whether to drill, she will know whether she ordered a test and its

results.  Test Report will be “not available” if she orders no test, equal to Seismic

Structure if she orders that test, or otherwise equal to the results of a cheaper

experimental seismic test.

Figure 19.  The oil wildcatter and canonical form
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The wildcatter can use the influence diagram shown in Figure 19a to make and

value her decisions.  It would even permit her to compute her value of clairvoyance on

the amount of oil or the seismic structure before either of her decisions.  However, there

are things that are hidden about the test report, and she is unable to compute her value of

clairvoyance on the revenues or the cost of drilling.  We can address these issues by

adding information and structure to the diagram so that it is in canonical form as shown

in Figure 19b.

An influence diagram is in canonical form if every uncertainty that is affected by

a decision is represented by a deterministic node descendant of that decision in the

influence diagram (Heckerman & Shachter, 1995; Howard, 1990; Matheson, 1990).  The

cost of drilling depends on whether she chooses to drill and how much it would cost if

she drills.  Thus it is both uncertain and somewhat under the control of the decision

maker.  To make Cost of Drilling deterministic, we must the remove the uncertainty to

another node, Cost if Drill, unaffected by DM, and for which she can value clairvoyance.

Likewise, to make Revenues deterministic, we must remove the uncertainty to another

node, Revenues(Oil, Drill), which is an uncertain table of values corresponding to all

possible values of Amount of Oil and Drill?.  This table is unaffected by DM so she can

value clairvoyance for it.  Similarly, to make Test Report deterministic, we must

explicitly represent the results from the different tests as uncertain variables, unaffected

by DM and for which she can value clairvoyance.  In the process of transforming an

influence diagram into canonical form, the causal mechanisms must be explicitly

represented for every uncertain variable affected by decisions.
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A classic model of decision making over time is the Markov decision process

(Howard, 1960) represented by the influence diagram shown in Figure 20.  There are

multiple stages, usually thought of as epochs in time, t, t+1, …, and in each stage there is

a state of the process, an action to be chosen, and a (discounted) reward for that period.

The state for the next stage is affected by the current action and the reward for each

period is based on the current state, the current action, and the next state.  It is well

known that even though all of the states and decisions in the past are observable now

through no forgetting, the current state contains all of the information from the past and

present needed to value and make decisions in the present and in the future.  In the

terminology of the next section, it is the requisite observation for the current action.

Figure 20.  Markov decision process

There are many situations where DM wants to analyze the decisions of others.

Imagine a health care provider deciding whether to offer a screening test.  If DM were the

patient receiving the test, she might represent the situation using the influence diagram

shown in Figure 21a, similar to the one in Figure 17a.  The focus when considering a

screening test is typically on the sensitivity and specificity of the test, P{Test

Results|Disorder, &}.  However every aspect of the influence diagram matters.  What

treatment alternatives are available and how effective are they in terms of the health

outcomes?  What is the prevalence of the disorder, P{Disorder, &}?  If the DM is not the
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patient, but rather the health care provider offering the screening test, then Treatment is

someone else’s choice, not under her control and therefore uncertain, and we get the

diagram shown in Figure 21b.

Figure 21.  Screening for disease

The focus in the examples so far has been on the relationships among the

uncertain and decision variables, but influence diagrams can be used to capture the

structure of preferences as well.  Consider the objectives hierarchy for automobile safety

(Keeney, 1992) represented by the influence diagram shown in Figure 22.  This could

easily be incorporated into a more complex decision model, harnessing the graphical

intuition of the influence diagram for models with multiple attributes and objectives.

Figure 22.  Objectives Hierarchy for Automobile Safety
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4. Analyzing Decision Models

Although influence diagrams have not yet achieved the popularity of belief

networks, they benefit from many of the same improvement in computational power and

the development of efficient algorithms (Jensen, Jensen, & Dittmer, 1994; Keeney, 1992;

Shachter & Peot, 1992).  This section presents some of those algorithms, not in their most

efficient implementations, but primarily to gain some intuition for modeling and analysis.

There is a straightforward extension of the Bayes-Ball Algorithm for decisions

that explores a structured influence diagram to determine the requisite observations for

each decision (Shachter, 1999).  Visiting each decision node 

€ 

di  in reverse chronological

order, i = m, … , 1, replace 

€ 

di  with a deterministic node with parents

€ 

Pa(i) = NE (V ∩De(di) |{di}∪ Pa(di))−{di}, the requisite observations for 

€ 

di  with

respect to the values it affects.  (Note that if 

€ 

di  is not in its requisite observation set it can

be eliminated, since it has no effect on DM’s total value.)  At this point, the requisite

observations to determine the total value are given by 

€ 

NE (V |W0) .  Of course, while

gathering the requisite observations, we can also determine the requisite distributions.

As an example of the Bayes-Ball Algorithm for decisions, consider a situation in

which both historical data and new experimental evidence about an uncertain state are

available to DM in making a decision, and she also chooses which evidence to collect.

There is a cost of the evidence and a benefit based on her choice and the state.  The

influence diagram for this situation is shown in Figure 23a.  Bayes-Ball is run on the Act

decision, the Design decision, and on the situation before the Design decision in the

diagrams shown in Figures 23b, 23c, and 23d.  In this situation all of the variables are

requisite.
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Figure 23.  Bayes-Ball Algorithm for Decisions

The same decision situation with clairvoyance on State before Act is represented

by the influence diagram shown in Figure 23e and the Bayes-Ball diagrams are shown in

Figures 23f, 23g, and 23h.  Now the only requisite information to make the optimal

choices are the value functions and the State observation.  Considerably more

information is needed to value this decision situation prospectively.  In that case the only

non-requisite variable is Experiment.

The task of analyzing influence diagrams, actually determining the optimal

policies and valuing the decision situation can be accomplished by graphical operations

on the diagrams that alter the ordered list and successively remove nodes from the
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diagram.  The diagram is reduced until all that remains is a single value node so that we

can value the decision situation.

The simplest transformation, barren node removal, can be used at any time that a

decision or unobserved uncertain node has no children – at that point, it can be simply

removed from the diagram, since it no longer affects the total value.  The requisite parent

sets for decisions computed by Bayes-Ball can also be used to simplify the problem.

There are three other graphical transformations needed, one to remove decision

nodes, one to remove uncertain nodes, and one to remove value variables (when there are

multiple value nodes).

When a decision node i has only one child, a value node j, and all of the other

parents of the value node are also parents of the decision node, 

€ 

Pa(i)⊇ Pa( j) −{i}, then

optimal policy determination replaces the decision variable with a deterministic variable,

as shown in Figure 24a.  The new deterministic function for node i is given by

€ 

fi(xK |&) = argmax
xi ∈Ω i

f j (xi,xK )  for all 

€ 

xK ∈ ΩK ,

where 

€ 

K = Pa(i)∩ Pa( j) = Pa( j) −{i}.  The choice of 

€ 

xi can be arbitrary when there are

ties.  This optimal policy should be recorded before it is itself removed.  Note that any

parents of i that are not parents of j are ignored in choosing the optimal policy and might

become barren.  (These are all identified by Bayes-Ball.)  The other parents of i, given by

K, are the requisite observations for i.

When an uncertain node i has only one child, value node j, then uncertain node

removal removes the node i from the diagram, as shown in Figure 24b.  The new function

for node j is obtained by taking expectation,
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€ 

f j (XJ ,XK ,XL |&) =
xi ∈Ω i

∑ P{xi | XJ ,XK ,&} f j (xi,XK ,XL ) ,

where 

€ 

J = Pa(i) − Pa( j) , 

€ 

K = Pa(i)∩ Pa( j), and 

€ 

L = Pa( j) − ({i}∪ Pa(i)) .  Similarly,

when there are multiple value nodes, i and j, value node removal removes the node i by

replacing the function in node j with their sum, as shown in Figure 24c.  The new

function for node j is given by

€ 

f j (XJ ,XK ,XL |&) = f i(XJ ,XK ) + f j (XK ,XL ).

This operation computes the partial sum familiar to dynamic programmers, but it should

be delayed as long as possible, so that decisions and uncertain nodes can be removed into

smaller value functions, ideally waiting until J or L is the empty set (Tatman & Shachter,

1990).

Figure 24.  Influence diagrams operations to remove nodes

Given these operations, an influence diagram with no directed cycles and ordered

decisions with no forgetting can be solved by the following algorithm (Shachter, 1986).
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1. If there is a value node with children, turn it into an uncertain node and give it

a value node child with value equal to its own.

2. While there are nodes remaining besides those in V or 

€ 

W0:

a. If there is a barren node, remove it;

b. Otherwise, if conditions are satisfied to remove the latest decision then

determine its optimal policy;

c. Otherwise, if there is chance node that is not observed before the latest

decision and has at most one value child then remove it, after reversing

any arcs to its non-value children in order;

d. Otherwise, a value node needs to be removed, preferably a descendant of

the latest decision.

Many people use influence diagrams to construct their decision models but prefer

to solve them using decision trees.  The conversion to decision trees is immediate if there

are no non-sequential arcs (Howard & Matheson, 1984).  An arc is said to be non-

sequential if it goes from an uncertain node in a later decision window to one in an earlier

decision window.  Whenever there are such arcs in an influence diagram at least one of

them will be reversible (Shachter, 1990).  Although it might not be the optimal algorithm,

a simple and effective process is to iteratively find reversible non-sequential arcs and

reverse them until there are no more non-sequential arcs, and the diagram can be

converted to a tree.
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