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Chapter 1

Higher homotopy groups

1.1 Lecture 1

1.1.1 Admin

Office hours: Always happy to talk.

Books: Hatcher, Ralph Cohen’s draft.

Most probable course outline:

• First half: Hatcher, chapter 4. Higher homotopy groups (of spheres).

1. Fibre bundles.

2. Cohomology. (In particular, stable homotopy.) Spectra and Brown repre-
sentability.

• Spectral sequences

• Model categories and homotopy limits.

• Approximately two weeks of leeway, students can choose the direction.

1.1.2 Homotopy groups

Setting:

• All spaces are pointed (for now).

• X,Y denote spaces.
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• [X,Y ] denotes homotopy classes of maps X → Y . Then [X ∧ Y,Z] = [X,ZY ], and
[ΣX,Y ] = [X,ΩY ]. More explicitly, the former is an adjunction between the “smash
product with Y ” and “maps from Y ”. The latter is an immediate consequence; an
adjunction between the reduced suspension and loop space (since ΣX := X ∧ S1).

Definition 1.1.1. The higher homotopy groups of a space X are πn(X) := [Sn, X].

For example, πn(Rk) = 0, π0(X) = {path components of X}. π1(X) is the fundamental
group.

Definition 1.1.2. Alternative definition:

πn(X) = {(Dn,Sn−1)→ (X, ∗)}/homotopy.

That is, maps sending Sn−1 to ∗, where homotopies are invariant on Sn−1.

Let f, g ∈ πn(X), n ≥ 1. Then the above definition gives a clear group operation.

Proposition 1.1.3. • For n ≥ 2, homotopy groups are abelian. This can be seen via
a diagrammatic proof. Explicitly, to prove that f + g = g + f for arbitrary f and g,
consider f + g. 1. Shrink the domains of f and g so that they are disjoint subdisks
of Dn with room to be slid past each other. 2. Exchange their order by sliding them
past each other. 3. Expand their domains to obtain g + f .

• If x0, x1 are connected by a path, then πn(X,x0) ∼= πn(X,x1).

• In fact, there is a canonical action π1(X) y πn(X) given by the isomorphism above.
X is abelian if the action is trivial.

• Each πn is a functor from topological spaces to groups.

Proposition 1.1.4. Let X̃ → X be a covering space. Then πn(X̃) ∼= πn(X) whenever
n ≥ 2.

Proof. Consider the induced map πn(X̃) → πn(X) (induced by the covering map). Must
prove it is surjective and injective. Surjectivity is immediate, since for each n ≥ 2, Sn has
trivial fundamental group. Thus the covering map lifts any map Sn → X. Similarly for
injectivity, lift maps I × Sn → X.

Remark. Covering spaces can be thought of in the following way. “A space that differs
from the base space only in the first homotopy group, and no others.”

Corollary 1.1.5. Since R→ S1 is a covering map, the homotopy groups of a circle are

πn(S1) =

{
Z n = 1

0 otherwise.
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Proposition 1.1.6.
πn(ΠαXα) = Πα(πn(Xα)).

Proof. This follows from the fact that maps Sn → ΠαXα are products of maps from Sn to
Xα.

1.1.3 Relative homotopy groups and homotopy long exact sequence

Let A ⊂ X be a subspace.

Definition 1.1.7. The relative homotopy groups are

πn(X,A) = {(Dn,Sn−1)→ (X,A)}/homotopy.

Here the homotopy (that is being modded out) is not relative to Sn−1, but the homotopy
restricted to Sn−1 must have image contained in A.

Lemma 1.1.8. If [f ] ∈ πn(X,A) and [f ] = 0, then f is homotopic to g rel Sn−1 with
im g ⊂ A.

Proof. Note that 0 ∈ πn(X,A). ⇐ is the easy direction: Suppose f ∼ g, where im g ⊂ A.
Then g : (Dn,Sn−1)→ (A,A).

For the converse direction, suppose [f ] = 0, so that it is homotopic to the constant map.
Then im f ⊂ A. Consider “thickening up” the boundary of f and applying the homotopy
f ∼ 0.

Remark. It is not true in general that πn(X,A) ∼= πn(X/A)!

Theorem 1.1.9.

· · ·πn(A)→ πn(X)→ πn(X,A)→ πn−1(A)→ · · ·

is a long exact sequence, where the first map is induced by the inclusion map, the second
by (Dn, Sn−1) → (X, ∗), and the third by restricting each element (Dn, Sn−1) → (X,A) to
the boundary, Sn−1.

Proof. Exactness at πn(X): The kernel is the collection of maps (Dn, Sn−1) → (X, ∗)
which are homotopic to (Dn,Sn−1)→ (A, ∗) rel Sn−1. By the previous lemma, this is just
the image of the inclusion map. Exactness at πn(X,A) and πn−1(A) can also be verified
directly.
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1.2 Lecture 2

Example of homotopy long exact sequence: Let X be a space, and CX the cone of X:

CX := X × I/X × {0}.

Then CX ∼= ∗, so by the homotopy long exact sequence, πn(CX,X) ∼= πn−1(X).

Remark. CX/X = ΣX, but
πn(ΣX) � πn−1(X).

If this were true, it would be easy to determine all the homotopy groups of spheres! On
the other hand,

πn(X) ∼= πn−1(ΩX).

I.e. loops allow us to shift homotopy, but suspension does not.

Definition 1.2.1. X is n-connected if πk(X) = 0, k 6= n. (X,A) is n-connected if
πk(X,A) = 0 for k ≤ n.

1.2.1 Homotopy groups and CW-complexes, Whitehead’s theorem

Recall: CW-complexes are “built from spheres”. These should have good relations with
homotopy groups.

Lemma 1.2.2. If (X,A)→ (Y,B) is a map of CW-pairs, and πn(Y,B) = 0 for all n, where
X \A has cells, then f ∼ g rel A with g : (X,A)→ (B,B).

Proof. Induction on cells of A. Idea: Cell of X \ A is (Dn, Sn−1) → (Y,B) by restriction.
This is trivial in πn(Y,B), so it can be retracted to B.

Theorem 1.2.3 (Whitehead). Let f : X → Y be a map of CW-complexes, with f∗ :
πn(X)→ πn(Y ) an isomorphism for every n. Then f is a homotopy equivalence.

CW-complexes are completely determined by homotopy groups! Gives some insight
into why they are difficult to compute in general, since they are evidently so strong.

Proof. First assume X ↪→ Y is a CW-inclusion. By the homotopy long exact sequence,
πn(Y,X) is zero. Thus apply above lemma to (Y,X) → (Y,X). For the general case, let
f : X → Y . This factors through the mapping cylinder: X → Mf → Y . The latter
is a homotopy equivalence. We require the former inclusion to be cellular and apply the
previous special case. By the succeeding theorem, we are done.

Example. Consider S2×RP∞ and RP2. The former has a double cover; S2×S∞, while the
latter has a double cover; S2. Since S∞ is contractible, both spaces have the same homotopy
classes. However, they have different cohomology, so there is no map realising a homotopy
equivalence. This is because we do not have isomorphisms between the homotopy groups
induced from a map between the spaces, as required in the Whitehead theorem.
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1.2.2 Cellular maps

Definition 1.2.4. A map f : X → Y between CW complexes is called cellular if f(Xn) ⊂
Y n.

Theorem 1.2.5. Every map f : X → Y is homotopic to a cellular map.

Proof. Follows from an induction. The idea of the crucial step: suppose en is a cell of X
with f(en)∩em 6= ∅ where em is a cell of dimension m > n of Y . We proceed by differential
topology: f is homotopic to a smooth map. Restrict this smooth map to en → em ∪ stuff.
By counting (diff top) there is a point in em which is not in the image of f . Retract f
away from em via this hole.

Corollary 1.2.6. πk(Sn) = 0 whenever k < n.

Proof. Consider a map f : Sk → Sn. This is homotopic to a cellular map. The only cells
in Sn are itself and a point.

Corollary 1.2.7. Let Xn ⊂ X denote its n-skeleton. Then Xn ↪→ X induces isomor-
phisms on πk for k < n, and a surjection when k = n.

Proof. Consider f : Sk → X, cellularly approximate. Surjective whenever k ≤ n by lifting
the map as in lecture 1. Injective whenever k + 1 ≤ n by lifting a homotopy as in lecture
1. (One dimension is lost in injectivity, since we must lift a map from Sk × I, which adds
an additional dimension.)

Remark. This completes the proof of Whitehead’s theorem.

1.2.3 CW-approximation

Definition 1.2.8. Let X be a space. A CW-approximation of X is a CW-complex Z and
a map Z → X inducing isomorphisms on homotopy groups. Such a map is called a weak
equivalence.

Remark. By Whitehead’s theorem, on CW-complexes, weak equivalence is equivalent to
homotopy equivalence.

Theorem 1.2.9. Every space X has a CW-approximation Z → X.

Proof. Build Z inductively. Assume Zn−1 → X has been constructed, inducing isomor-
phisms on πk, k < n. Define

Z ′n := Zn−1 ∨
∨

α∈πn(X)

Snα.

This has a map g into X, since there are maps Zn−1 → X and α : Snα → X. Then form
pushout to kill the kernel of g. The universal property of the pushout gives the required
map into X. Moreover, gluing copies of Sn does not change lower homotopy groups.
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1.3 Lecture 3

We have established that CW-approximations exist. However, suppose we have a map
f : X → Y between spaces. If X ′ and Y ′ are CW-approximations of X and Y , we don’t
know if there is an induced map X ′ → Y ′. We prove that this is indeed the case in the
following proposition.

Proposition 1.3.1. CW-approximation is functorial up to homotopy. That is, there exists
a unique induced map X ′ → Y ′ as described above.

Proof. Suppose g : Y ′ → Y is a CW-approximation. Consider the following diagram:

X ′ X

Y ′ Mg Y

∼

f̃

f

∼ ∼

By a lemma from lecture 2, the map (X ′, ∗)→ (Mg, Y
′) is homotopic to (X ′, ∗)→ (Y ′, Y ′).

Corollary 1.3.2. CW-complexes are unique up to homotopy.

Proof. Apply the above proposition to id : X → X.

1.3.1 Calculating homotopy groups, homotopy excision theorem

Theorem 1.3.3 (Homotopy excision). Let X = A ∪C B. Assume (A,C) is n-connected,
and (B,C) is m-connected. Then the induced map

πi(A,C)→ πi(X,B)

is an isomorphism if i < n+m, and surjective if i = n+m.

Corollary 1.3.4. (Freudenthal Suspension)

πi(Sn)
Σ−→ πi+1(Sn+1)

is an isomorphism for i < 2n− 1, and surjective when i = 2n− 1.

Remark. The above is true in general for X (n− 1)-connected.

Proof. (Freudenthal suspension) Observe that ΣX = CX+ ∪X CX−, and both sides are
homotopic to points. By the homotopy long exact sequence, πi(X) = πi+1(CX+, X), and
πi+1(ΣX,CX−) ∼= πi+1(ΣX). It remains to understand πi+1(CX−, X)→ πi+1(ΣX,CX−).
This is an isomorphism for i+ 1 ≤ 2n.
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Proof. (Homotopy excision, outline) By cellular approximation, it is enough to consider
A = C ∪ cells of dim ≥ n, B = C ∪ cells of dim ≥ m. Proceed by induction (over cells of
A). Let A = A′ ∪ ei, X = A ∪C B = X ′ ∪ ei (where X ′ = A′ ∪C B). This gives a diagram
as follows:

C A′ A

B X ′ X

By the inductive hypothesis, the left hand square satisfies the excision theorem. The right
hand side is simply adding one cell. We later prove excision for this square. For now,
suppose it has already been proven. We have a long exact sequence of homotopy groups
from the top and bottom rows of the above diagram:

πi+1(A,A′) πi(A
′, C) πi(A,C) πi(A,A

′) πi−1(A′, C)

πi+1(X,X ′) πi(X
′, B) πi(X,B) πi(X,X

′) πi−1(X ′, B)

∼=,prop ∼=,IA ∼=,prop ∼=,IA

Moreover, the four labelled vertical arrows are isomorphisms by the earlier proposition and
by the inductive hypothesis. By the five lemma, the central map is an isomorphism as
required.

Next let C be a space, A = C∪en+1, B = C∪em+1, X = A∪CB = C∪en+1∪em+1. Then
πi(A,C)→ πi(X,B) is an isomorphism for i < m+n, and a surjection for i = m+n. this is
a similar proof to earlier proofs in which surjecitivity is first shown, and injectivity follows
by a similar argument by lifting homotopies (and hence holds in one lower dimension).
Thus only surjectivity is proved. If b ∈ (en+1)◦, a ∈ (em+1)◦, then there is a commutative
square

πi(A,C) πi(X,B)

πi(X \ {a}, X \ {a, b}) πi(X,X \ {b})

∼= ∼=

as required.
Next instead of general points a and b, we choose specific useful values. Consider a map

f ∈ πi(X,B); f : (Di, Di−1)→ (X,X \ {b}). Let p : Di → Di−1 be a projection. Our new
choices of a and b are as follows: let a′ ∈ em+1, b′ ∈ en+1 with p(f−1(b′))∩ p(f−1(a′)) = ∅.
We can find such a′ and b′ by assuming without loss of generality that everything is smooth.
A pair (b′, a′) does not lie in the image of f : f−1(en+1)×Di−1 f−1(en+1)→ (en+1× em+1).
By smoothness, apply a dimension count: The dimension of the codomain is n+m+2, the
dimension of the domain is at most i+ i− (i− 1) = i+ 1. Thus the map is not surjective,
so a′ and b′ exist.
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Finally to complete the proof, we require maps g : (Di, Di−1)→ (X \ {a′}, X \ {a′, b′})
and H : (Di, Di−1)× I → (X,X \ {b′}), with g ∼ f via H. By the choice of a′ and b′, such
maps exist as required.

1.4 Lecture 4

Corollary 1.4.1. (of Freudenthal suspension.) πn(Sn) = Z.

Proof. It is already known that π1(S1) = Z. From Freudenthal, the map π1(S1)→ π2(S2)
is cyclic. Since π2(S2) contains an element of infinite order (from Homology), the map is
an isomorphism. For higher n, Freudenthal immediately gives an isomorphism πi(Si) →
πi+1(Si+1).

Example. πn(S1 ∨ Sn) = Z∞.

1.4.1 Hurewicz theorem

Theorem 1.4.2. (Hurewicz) Let X be (n− 1)-connected, n ≥ 2. Then

πn(X) ∼= Hn(X;Z).

Remark. The above theorem holds for relative homology and homotopy.

Proof. Assume without loss of generality that X is a CW-complex, with no cells below
dimension n. Then

πn(X) ∼=
∏

n-cells of X

Z
/

relations given by cells ∼= Hn(X;Z).

Corollary 1.4.3. Let f : X → Y be a map between CW-complexes, (π1(X), π1(Y ) abelian).
Then f induces an isomorphism on homotopy if and only it induces an isomorphism on
homology.

Proof. Consider X ↪→Mf → Y . Note that Hn(Mf , X) = 0 for all n. Then πn(Mf , X) = 0
for all n.

While an isomorphism between homotopy and homology has been proved, the map is
not yet explicit. What is it?

πn(X)→ Hn(X), (f : Sn → X) 7→ f∗(0).

This is natural up to sign.
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Chapter 2

Fibre sequences

2.1 Lecture 4.5

Course is leaving the realm of Hatcher, should be covered effectively in Cohen’s preprint.

2.1.1 Basic definitions

Definition 2.1.1. A map f : E → B has the homotopy lifting property for a space W if,
whenever there is a homotopy from W into B, it can be lifted to a homotopy into E.

W E

W × I B

ι f

H

∃H̃

• The map f is a Serre fibration if it is homotopy lifting with respect to CW-complexes.

• The map f is a Hurewicz fibration if it is homotopy lifting with respect to all spaces.

Hereafter, all fibrations are assumed to be Hurewicz fibrations. A fibre sequence is F ↪→
E → B where f is a fibration, and F = f−1(b0).

Proposition 2.1.2. Pullbacks of fibrations are fibrations.

Proof. The diagram outlines the proof.

W E′ E

W × I B′ B

∃ (1) f
∃ (2)

12



Since the homotopy W ×I → B′ → B lifts to a map W ×I → E, by the universal property
of pullbacks, there is a lift of the homotopy W × I → B′ to E′.

Example. • Clearly id : E → E and E → ∗ are fibrations.

• A more instructive example is the projection map F ×E → E. Think fibre bundles.

• If f : E → B is a fibration, then f−1(A)→ A is also a fibration.

Proposition 2.1.3. Let A,B ⊂ X. Then

E(X;A,B) = {paths in X, starting in A and ending in B} → A×B

is a fibration, where the map is defined by γ 7→ (γ(0), γ(1)).

Proof. The following diagram commutes:

W E(X;A,B)

W × I A×B

w 7→(w,0)

w 7→γw(−)

γ 7→(γ(0),γ(1))

(w,t) 7→(γA(t),γB(t))

Thus γA(0) = γw(0), γB(0) = γw(1). A lift is constructed by sending

(w, t) 7→ γ−1
A (−)|[t,0] + γw(−) + γB(−)|[0,t].

Remark. Some interesting special cases: If A = X and B = {∗}, we have E1X → X: a
fibration of paths ending at the base point. The fibres of fibration are exactly loops:

ΩX ↪→ E1X → X.

Moreover, the space E1X is contractible.
Analogously, one can consider E0X → X, a fibration of paths starting at the base

point. Then there is again a fibration

ΩX ↪→ E0X → X.

We write EX to denote E1X (which we use without further mention, by noting that
both alternatives give the same theory).

Definition 2.1.4. Let f : X → Y be any map between topological spaces. The homotopy
fibre If is the pullback

13



If EY

X Y

More explicitly, If = {(x, γ) : γ(0) = f(x), γ(1) = ∗}.

Remark. If → Y plays the role of being a fibration which “approximates” any f .

2.2 Lecture 5

2.2.1 Basic properties

We eventually wish to construct a fibration

ΩE → ΩB → F → E → B.

Recall our definition of the ”homotopy fibre” from the end of the previous lecture: If
f : X → Y is any map, pulling back gives If → EY , where If is termed the homotopy
fibre, and If → X is a fibration with fibre ΩY .

Proposition 2.2.1. Let g : W → X be a map, and f : X → Y a map.

If

W X Y
g f

The map g factors through If if and only if fg ∼= ∗.

Proof. (⇒) Suppose g factors through If . This gives a diagram

If EY ∼= ∗

W X Y
g f

(⇐) Assume fg ∼= ∗, via a homotopy H : W × I → Y with H(−, 1) = ∗, H(−, 0) = fg.
Consider the adjoint H : W → EY . Pullback gives the required lift.

Proposition 2.2.2. If p : X → Y is a fibration, then p−1(∗) ∼= Ip.

14



Proof. Consider p−1(∗)→ Ip, sending x to (x, const∗), and Ip → p−1(∗), sending (x, γ) to
γ(1). Consider the following two diagrams:

∗ X Ip X

I Y Ip × I Y

x

p ind0

(x,γ)7→x

p

γ

E

(x,γ),t 7→γ(t)

H

Define Ip → p−1(∗) as H(−, 1). Now Ip → p−1(∗)→ Ip is the end of H given by

Ip Ip X

Ip × I EY Y.

id

ind0

H

It remains to prove that the composition p−1(∗) → Ip → p−1(∗) is homotopic to the
identity. This is the end of the diagonal map

p−1(∗) X

p−1(∗)× I Y.
(x,t) 7→∗

H

Since H is a homotopy from the identity we are done.

Remark. Ip is homotopy equivalent to any {(x, γ) : γ(0) = f(x), γ(1) = y}, where y is
in the path component of ∗. The proposition implies that for any fibration p : X → Y ,
p−1(∗) ∼= p−1(y).

Proposition 2.2.3. If we have a diagram

X X ′

Y Y ′

f f ′H

which commutes up to homotopy H, then we have a diagram as follows (where the bottom
square commutes, and the upper square commutes up to homotopy). The crux of the proof
is understanding the horizontal map If → If ′ :

15



ΩY ΩY ′

If If ′

X X ′.

H̃

Proof. If = {(x, γ) : γ(0) = f(x), γ(1) = ∗}, and If ′ = {(x′, γ′) : γ′(0) = f ′(x′), γ′(1) = ∗}.
Define the map If → If ′ by

(x, γ) 7→ (α(x), H(x, 1− t)).

Thus the “honest commutativity” is achieved by building the homotopy into the map
between If and If ′ .

Proposition 2.2.4. ΩIf ∼= IΩf .

Proof. Apply Ω to the left diagram to obtain the diagram on the right.

If EY ΩIf ΩEY ∼= EΩY

X Y ΩX ΩY

The top left object in this diagram is the pullback IΩf , establishing a homotopy (in fact,
a homeomorphism).

Proposition 2.2.5. I If f0
∼= f : X → Y via H, then If0

∼= If1 .

Proof. Left to reader.

2.3 Lecture 6

Since we have been talking about fibrations for a while, we give a brief excursion into the
dual notion.

16



2.3.1 Cofibrations

Fibrations have the homotopy lifting property:

W E

W × I A

∃

Cofibrations have the dual notion of homotopy extension:

A W I

B W

ev0
∃

A cofibre sequence is
A ↪→ B → B/A.

Example. • CW pairs are cofibrations.

• A ↪→ A ∨B,B ↪→ A ∨B.

• A ↪→ CA→ ΣA.

We already know pullbacks of fibrations are fibrations. Similarly, pushouts of cofi-
brations are cofibrations. Moreover, cofibrations satisfy analogous naturality results to
fibrations.

Remark. One could state dual notions of propositions concerning fibrations, and prove
them for cofibrations.

Proposition 2.3.1. If f : X → Y is a cofibration, it’s an embedding.

Proof. Consider the inclusion X ↪→ CX. Since f is a cofibration, there is a lift H̃ as in
the following diagram. We consider the endpoint of this lift:

X CXI

Y CX

f H̃

Let g = H(−, 1). Then g ◦ f = i which is a homeomorphism onto its image. Thus f is at
least an embedding.

17



2.3.2 Fibre replacements

Recall that the overarching goal was to understand exact sequences

· · ·F → X → Y → 0.

More explicitly, we wish to create a long exact sequence by gluing “reasonable” spaces to
the left.

Definition 2.3.2. Let X → Y be a map, and Ef the pullback

Ef Y I

X Y

ev0

f

More explicitly, Ef = {(x, γ) : f(x) = γ(0)}.

Proposition 2.3.3. Given f : X → Y , we have X
∼−→ Ef

ev1−−→ Y homotopic to f , with
Ef → Y a fibration. (This will be our notion of a fibre replacement.)

Proof. Consider X → Ef , x 7→ (x, const). We wish to show that Ef → Y is a fibration.
Consider the following diagram, with δw(0) = γw(1).

W Ef

W × I Y

w 7→(g(w),γw)

ev1

w,t7→δw(t)

The lift is given by concatenating paths: H(w, t) = (g(w), γw + δw|[0,t]). The fibre of
Ef → Y is the homotopy fibre If = {(x, γ) : f(x) = γ(0), γ(1) = ∗}. This gives fibre
sequences

If → Ef → Y → 0, ΩY → If → X.

Let f : X → Y be any map. We now begin to construct a “useful” long exact sequence.
From above, there is a fibration pr : If → X, with fibre ΩY . But now pr itself has a
homotopy fibre, λ : Ipr → If , with fibre λ−1(∗).

18



Ipr If X

λ−1(∗) ΩY

λ pr

Here

Ipr = {((x, γ), δ) ∈ If ×XI : γ(0) = f(x), γ(1) = ∗ ∈ Y, δ(0) = x, δ(1) = ∗ ∈ X}.

The fibre is explicitly given by

λ−1(∗) = {((∗, const∗), δ) : δ(0) = ∗, δ(1) = ∗}.

Thus λ−1(∗) is just the loops in X! Hence our above diagram becomes

Ipr If X

ΩX ΩY

λ pr

Ωf

∼

To extend this further to a juicy long exact sequence, we wish to understand the commuta-
tivity of the leftmost triangle. A loop γ ∈ ΩY is mapped to ((∗, γ), const∗). On the other
hand, a loop δ ∈ ΩX is sent to ((∗, const∗), δ). Are these homotopic? We must compare
((∗, f∗δ), const∗) and ((∗, const∗), δ).

Consider a loop δ in X. By unlooping, and inspecting the relations in Ipr, we find that
γ must be δ with reversed parametrisation. More explicitly, we define H : ΩX × I → Ipr

by
(γ, t) 7→ ((δ(t), f∗δ

−1|[t,0]), δ|[t,1].)

This shows that the above diagram can be made commutative up to homotopy if we
introduce a sign change! Thus we have a commutative diagram

Ipr If X

ΩX ΩY

λ pr

−Ωf

∼

19



2.4 Lecture 7

2.4.1 Long exact sequence of a fibration

Definition 2.4.1. A sequence of spaces X3 → X2 → X1 is exact at X2 if [Z,X3] →
[Z,X2]→ [Z,X1] is exact for all Z.

Remark. This means that πn(X3)→ πn(X2)→ πn(X1) is exact for each n.

Lemma 2.4.2. For any map X → Y , the sequence If → X → Y is exact.

Proof. Exactness means that given a map Z → X, we wish to understand when it arises
from a map Z → If . This is exactly the lifting property of the diagram

If

Z X Y.

f

But we showed that a lift exists precisely when Z → Y is homotopy trivial by proposition
2.2.1.

Lemma 2.4.3. If X3 → X2 → X1 is exact, then so is ΩX3 → ΩX2 → ΩX1, and given
vertical homotopy equivalences in the following diagram, the second row is also exact.

X3 X2 X1

Y3 Y2 Y1

∼ ∼ ∼

Proof. (Proof for the loop space part of the lemma.)

[Z,ΩX3] [Z,ΩX2] [Z,ΩX1]

[ΣZ,X3] [ΣZ,X2] [ΣZ,X1]

∼= ∼= ∼=

Since the bottom row is exact, the top row is exact.

Proposition 2.4.4. If f : X → Y is any map, then

ΩX
−Ωf−−−→ ΩY → If → X

f−→ Y

is exact.
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Proof. We already know If → X → Y is exact from an earlier lemma, giving exactness
at X. Since ΩY is homotopic to Iλ, where λ : If → X, we have exactness at If . Finally
consider the diagram

ΩX ΩY If

ΩX Iλ If

Ig Iλ If

=

−Ωf

∼ =

∼ = =

g

to see exactness at ΩY .

Remark. In fact, −Ωf has the same image and kernel as Ωf . Therefore we have an exact
sequence

ΩX
Ωf−−→ ΩY → If → X

f−→ Y.

Corollary 2.4.5 (The big theorem!!). If F → X → Y is a fibre sequence, there is a long
exact sequence

· · · → Ω2X → Ω2Y → ΩF → ΩX → ΩY → F → X → Y.

Corollary 2.4.6. If F → X → Y is a fibre sequence, then there is a long exact sequence

· · · → π2(X)→ π2(Y )→ π1(F )→ π1(X)→ π1(Y )→ π0(F )→ π0(X)→ π0(Y ).

2.4.2 Cofibre analogue: coexact sequences

With cofibrations, we have

A B Cf Cg

ΣA ΣB.

f g

∼=

−Σf

A sequence A→ B → C is coexact if

[C,Z]→ [B,Z]→ [A,Z]
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is exact for each Z. This gives rise to a long coexact sequence

A→ B → Cf → ΣA→ ΣB → · · · .

In particular, given an inclusion A ↪→ B, we have

A→ B → B/A→ ΣA→ ΣB → Σ(B/A)→ · · · .

In fact, because Hn(X,G) = [X,K(n,G)], this gives a long coexact sequence

· · · → Hn+1(B,G)→ Hn+1(A,G)→ Hn(B/A,G)→ Hn(B,G)→ Hn(A,G)→ · · · .

Remark. Remarkably, this establishes a duality between homotopy and cohomology, but
not between homology and cohomology.

2.4.3 Fibration examples

Remark. If we work with Hurewicz fibrations, we get results in Top. If we work with
weak fibrations (Serre fibrations), we get results in CW.

Definition 2.4.7. Let (K,L) be a CW-pair. A map p : E → B has the homotopy extension
property with respect to (K,L) if there is a lift given the following diagram:

K × {0} ∪ L× I E

K × I B

p
∃

Proposition 2.4.8. Let p : E → B (not pointed). TFAE:

1. p is a weak fibration.

2. p has the homotopy extension property with respect to (Dn, ∗).

3. p has the homotopy extension property with respect to all CW pairs.

4. If (K,L) is a CW pair, and L is a deformation retract of K, the lift in the following
diagram exists:

L E

K B

p∃
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Proof. (1) ⇒ (2). Extension property with (I, ∗).

(2) ⇒ (3). Notice (Dn × I,Dn × {0}) ∼= (Dn × I,Dn × {0} ∪ Sn−1 × I). Induction
over cells of L → K. Assume there is a lift F ′ for K × {0} ∪ (K,L)n−1 × I. Extend to
(K,L)n.

2.5 Lecture 8

We first finish proving the proposition from the previous class.

Proposition 2.5.1. Let p : E → B (not pointed). TFAE:

1. p is an unbased weak fibration.

2. p has the homotopy extension property with respect to (Dn, ∗).

3. p has the homotopy extension property with respect to all CW pairs.

4. If (K,L) is a CW pair, and L is a deformation retract of K, the lift in the following
diagram exists:

L E

K B

p∃

Proof. Last time we proved (1) ⇒ (2) and (2) ⇒ (3).

(3) ⇒ (4). Consider i : L ↪→ K. Choose a deformation retract r, H : ir ∼= idK . We
wish to find a lift in the following diagram on the left. We achieve this by finding a lift in
the right diagram as follows:

L E K ∪ L× I E

K B K × I B

f k 7→f(r(k)), (l,t)7→f(l)

g

∃

(k,t)7→g(Ht(k))

H̃

(4) ⇒ (3). Since W →W × I has a deformation retract, we can find the required lift.

Corollary 2.5.2. Unbased weak fibrations are based weak fibrations.

Proof. Let E → B be a based map, W a based CW complex. Want a based lift as follows:

23



W E

W × I B

based

based

But this is the same as finding an unbased lift in the following diagram, by the equivalence
in the previous proposition.

W ∪ (∗ × I) E

W × I B

2.5.1 Fibre bundles

Definition 2.5.3. A fibre bundle p : E → B is a map such that for all b ∈ B there is a
neighbourhood b ∈ U ⊂ B such that

p−1(U) B × Fb

U

∼=

where Fb = p−1(b).

Remark. All fibres are homeomorphic if B is connected.

Example. • If F is discrete, then a fibre bundle is just a covering space.

• If F = [0, 1], [0, 1]× [−1, 1]/(0, x) ∼ (1,−x) is the Mobius strip.

Proposition 2.5.4. Fibre bundles are fibrations.

Proof. Suffices to find a lift in the following diagram, by the earlier proposition:

Dn E

Dn × I BH

∃?
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Consider a cover B =
⋃
α Uα such that E|Uα ∼= Uα × F . Subdivide Dn =

⋃
β Cβ and

I =
⋃
γ Iγ such that H(Cβ, Iγ) ⊂ Uα. Inductively lift by inducing on dimension and

“order” or cubes. (Here order refers to the natural order of intervals parametrised by
time.) Assume there is a lift on ∂Cβ and Cβ × {t} where t is the start of Iγ . Then the
following diagram

Cβ ∪ ∂Cβ × I U0 × F

Cβ × Iγ Uα

H0

H

H̃

has a lift H̃ given by (H(x, t), H0(retraction(x))).

2.5.2 Fibre bundle examples: low hanging fruit

We now explore some fun examples.

Example.

S0 ↪→Sn → RPn

S1 ↪→S2n+1 → CPn

S3 ↪→S4n+3 → HPn.

In particular, CP1 ∼= S2 = C ∪ {∞}, with the map given by [x1 : x2] 7→ x1/x2. This gives
the Hopf fibration

S1 ↪→ S3 → S2.

Now the homotopy long exact sequence gives

0 = π3(S1)→ π3(S3)→ π3(S2)→ π2(S1) = 0.

Thus π3(S2) ∼= π3(S3) = Z! This is our first example of computing a non-trivial higher
homotopy group. A similar example is given by

S3 ↪→ S7 → S4.

Example. There is a fibre bundle

S1 ↪→ S∞ → CP∞.

But S∞ has no non-trivial homotopy groups, so the long exact sequence of homotopy has
isomorphisms

πn(CP∞) ∼= πn−1(S1).

This shows that CP∞ is a K(Z; 2).
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Example. There are many Lie group fibre bundles:

O(n− 1) ↪→O(n)→ Sn−1

U(n− 1) ↪→U(n)→ S2n+1

Sp(n− 1) ↪→Sp(n)→ S4n+1.

In particular, this gives πk(O(n− 1)) ∼= πk(O(n)) for k < n− 2.

Example. More generally, let Gn(Rk) be the n-planes in Rk, i.e. the Grassmannian
G(n, k). Let Vn(Rk) = V (n, k) be the orthonormal sets of size n in Rk. Then there is a
fibre bundle

O(n) ↪→ V (n, k)→ G(n, k).

More on this example in the next class!

2.6 Lecture 9

We continue the fibre bundle example from the previous class.

Example. Consider
O(n)→ V (n, k)→ G(n, k).

Suppose n < m < k. Then there is a fibration

V (m− n, k − n)→ V (m, k)→ V (n, k).

For n = 1, this is really just

V (m− 1, k − 1)→ V (m, k)→ Sk−1.

By induction, it follows that V (m, k) is (k −m − 1)-connected. In particular V (m,∞) is
weakly contractible. But now from the sequence

O(n)→ V (n, k)→ G(n, k),

we have
πn(G(m,∞)) ∼= πn−1(O(m)), so that G(m,∞) ∼= BO(m).
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Chapter 3

Cohomlogy

Notice: H̃n(−, G) : Top → Ab is contravariant. Is it representable as H̃n(−, G) ∼=
[−,K(G,n)]? The goal of this chapter is answer this question, which develops as an ana-
logue to the observation that πn are representable covariant functors. For the next week
or so we establish that reduced homology is representable.

Remark. Observe that reduced homology is necessary. If reduced homology isn’t used,
then we require [∗,K(G,n)] to be non-trivial, which is certainly impossible.

3.1 Construction of K(G, n)

Remark. Assume K(G,n) exists. What is its homotopy type? We know that

πk(K(G,n)) ∼= [Sk,K(G,n)] ∼= H̃n(Sk, G) =

{
G k = n

0 otherwise.

Lemma 3.1.1. Suppose (X,A) is an r-connected CW pair and A is s-connected. Then

πi(X,A)
∼=−→ πi(X/A)

for i ≤ r + s, and a surjection when i = r + s+ 1.

Proof. Homotopy excision. Observe that, in the correct range,

πi(X,A) ∼= πi(X ∪ CA,CA) ∼= πi(X ∪ CA) ∼= πi(X/A).

We now construct K(G,n)s. We do this skeleton-wise:

(K(G,n))n+1 =
∨
α∈G

Snα ∪
∨

β relation in G

Dn+1
β .
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Consider the pair ((K(G,n)n+1),
∨
α∈G Snα). By the above lemma we then have an exact

sequence

πn+1(K(G,n)n+1,
∨
α∈G Sn) πn(

∨
Sn) πn(K(G,n)n+1) 0

πn+1(K(G,n)n+1/
∨
Sn)

⊕
α∈G Z G.

∼= ∼= ∼=

By gluing cells to destroy only higher homotopies, this gives a construction.

Proposition 3.1.2. The construction above is natural, i.e. if X has the desired homotopy
type, then there exists a weak equivalence K(G,n)→ X.

Proof. Constructed cell-wise. The crux of the proof is that if Y =
∨
Sn ∪ en+1 and there is

a map f : πn(Y ) → πn(X), then f is induced from a map Y → X. The proof of the crux
of the proof is that πn(X) gives a map

∨
Sn → X. Extend this to en+1 by

en+1 →
∨
Sn →

∨
Sn ∪ en+1 exists−−−→ X.

This gives K(G,n)n+1 → X as required, with maps of higher cells being trivial.

Remark. Observe that πi(ΩK(G,n)) ∼= πi+1(K(G,n)). This gives a weak equivalence
between K(G,n) and ΩK(G,n + 1). By adjointness we also have a weak equivalence
ΣK(G,n)→ K(G,n+ 1).

To show that cohomology is representable, it will be shown that

H̃n(X,G) ∼= [X,K(G,n)]

by showing that [−,K(G,n)] is a generalised cohomology theory; a contravariant functor
from CW to Ab.

Definition 3.1.3. A reduced generalised cohomology theory is a collection of functors hn

(from CWop to Ab) that

1. takes homotopy equivalences to isomorphisms,

2. takes a cofibre sequence A→ B → B/A to an exact sequence

· · · → hn(B/A)→ hn(B)→ hn(A)→ hn−1(B/A)→ · · · .

3. and satisfies hn(
∨
αXα) =

∏
α h

n(Xα).

Remark. The second condition is equivalent to requiring that each hn(B/A)→ hn(B)→
hn(A), and hn(ΣA) = hn+1(A).
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3.2 Lecture 10

Recall from the previous lecture that a cohomology theory is a collection of functors h∗

which (i) sends homotopy equivalences to isomorphisms, (ii) cofibre sequences to long exact
sequences, and is (iii) trivial on points.

Remark. The contents of the lectures are back into Hatcher.

Example. Consider [−,K(G,n)]. It is easy to see that this satisfies properties (i) and
(iii) for being a cohomology theory. Moreover, to see that it satisfies the second condition,
consider a cofibre sequence B/A→ B → A. Then it can be verified that

· · · → [B/A,K(G,n)]→ [B,K(G,n)]→ [A,K(G,n)]→ [B/A,K(G,n− 1)]→ · · · .

is exact, since

[B/A,K(G,n− 1)] ∼= [B/A,ΩK(G,n)] ∼= [ΣB/A,K(G,n)].

In general, any any collection (Xn) with ΩXn
∼= Xn−1 gives a cohomology theory

[−, Xn], called the Ω spectrum.

3.2.1 Brown Representability

Theorem 3.2.1. Every reduced cohomology theory has the form hn(−) = [−,Kn] for some
Ω-spectrum Kn, which is unique up to homotopy.

Corollary 3.2.2. Hn(−, G) ∼= [−,K(G,n)].

Proof. Cohomology must be represented by something. Applying Hn to spheres shows
that the spaces must be K(G,n).

We now organise the preparations for the proof, which will take a lecture and a half.

• We need only focus on one level of h : CW∗ → Ab, since we can glue together the
rest.

• An alternative condition for (ii) is Mayer-Vietoris: given A and B, h(A ∪ B) →
h(A)⊕h(B)→ h(A,B) is exact. Thus the two properties can be used interchangeably.

It is well known that (ii) implies Mayer-Vietoris. For the converse, suppose A → B is a
cofibration. The following diagram shows that (ii) must hold:

h(B ∪ CA) h(B)⊕ h(CA) h(B ∩ CA)

b(B/A) h(B) h(A)

∼= ∼= ∼=
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Proposition 3.2.3. Let h : CW∗ → Ab satisfy (i), MV, and (iii). Then there is a
(K,u), u ∈ h(K) such that [X,K]→ h(X), f 7→ f∗(u) is a bijection.

Remark. (K,u) is called a universal pair for h. If (K,u) and (K ′, u′) are universal pairs,
then [K,K ′] = h(K), with k 7→ k′. Universality comes for free.

Remark. (K,u) is called n-universal if πi(K)→ h(Si) is bijective for i < n and surjective
when i = n. (K,u) is ∗-universal if it is n-universal for all n.

Lemma 3.2.4. Given any (Z, z) where z ∈ h(Z), Z connected CW. There is a ∗-universal
(K,u), Z ⊂ K and z = u|h(Z).

Proof. Proof by induction: Let K1 = z ∨
∨
α S1

α for α ∈ h(S1). Set u by u|h(Z) = z
and u|h(S1α) = α. Then [S1,K1] → h(S1) is surjective. For the inductive step, suppose
πn(Kn) → h(Sn) is surjective. Let α ∈ ker, and consider f :

∨
α Snα → Kn. This gives a

cofibre sequence ∨
S1
α →Mf → Cf =: K ′n+1.

By property (ii), this gives an exact sequence

h(K ′n+1)→ h(Kn)→
⊕

h(Sn).

Now define Kn+1 = K ′n+1 ∨
∨
β S1

β, β ∈ h(Sn+1). Once can verify that Kn+1 satisfies the
required properties.

Finally to define the ∗-universal pair (K,u), define K =
⋃
Kn × [n, n + 1]. Let A be

the union of even indices, and B the odd indices. Since A and B are disjoint unions, one
can define ua, ub ∈ h(A), h(B). Then K = A∪B, so MV can be used to glue ua and ub as
required. One can show that (K,u) is now ∗-universal.

Lemma 3.2.5. Let (A, a) and (X,x) be universal pairs. Assume A → X is a cofibration
with x|h(A) = a. Then there exists a lift into a ∗-universal (K,u):

(A, a) (K,u)

(X,x)

∃

The proof is left as an exercise for the reader, since my live-TeXing was too slow to write
up the proof outline at the end of the lecture.
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3.3 Lecture 11

3.3.1 Finishing the proof of Brown Representability

We complete the proof of Brown representability. Recall that we want to find universal
(K,u) such that [X,K] ∼= h(X), f 7→ f∗u. In the previous lecture we proved that we
can find ∗-universal (K,u), i.e. [Sn,K] ∼= h(Sn) for each n. We ended the lecture with a
lemma,

Lemma 3.3.1. Let (A, a) and (X,x) be universal pairs. Assume A → X is a cofibration
with x|h(A) = a. Then there exists a lift into a ∗-universal (K,u):

(A, a) (K,u)

(X,x)

∃

In fact, using this lemma we can prove that ∗-universal pair is universal. That is, if
[X,K] ∼= h(X) for all X an n-sphere, then it holds for all X.

Proof. First we show that [X,K] ∼= h(X) is surjective. Take A = ∗ in the lemma. Then
the existence of the lift proves surjectivity. For injectivity, consider f1∨f2 : (X∧∂∂I, x)→
(K,u). Then by the previous lemma, since (X ∧∂∂I, x) ↪→ (X ∧I, x), we have a homotopy
f1 ∼ f2. This gives injectivity.

In summary,

Proposition 3.3.2. There exists a universal pair (K,u) for h. That is, if h : CW → Ab
satisfies MV and property (iii) from the previous lecture, then there exists (K,u) such that
[X,K] ∼= h(X), f 7→ f∗u.

Theorem 3.3.3. Every reduced cohomology theory has the form hn(−) = [−,Kn] for some
Ω-spectrum Kn, which is unique up to homotopy.

Proof. Let h• be a reduced cohomology theory. For each hn, we can find universal pairs
(Kn, u). Next we show that Kn

∼= ΩKn+1. But we already know that

[Kn,ΩKn+1] ∼= [ΣKn,Kn+1] ∼= hn+1(ΣKn) ∼= hn(Kn) ∼= [Kn,Kn].

Thus if ω is the image of id ∈ [Kn,Kn] lying in [Kn,ΩKn+1], then ω is an isomorphism
between Kn and ΩKn+1. Finally it remains to show that [X,ΩKn+1]→ hn(X) is in fact a
group homomorphism. This comes from a cogroup structure and is left as an exercise.
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Example. The map H1(X,Z) → H2(X,Z), α 7→ α2 is trivial. Proof: α = f∗u for some
u ∈ K(Z, 1) = S1. Then u2 = 0, so α2 = 0.

The map H1(X,Z/2Z) → H2(X,Z/2Z) defined analogously may not be trivial, since
K(Z/2Z, 1) = RP∞.

If R is a ring, let Kn = K(R,n), f ∈ Hn(X,R), g ∈ Hm(Y,R). This gives maps

X × Y → Km ×Kn → Kn ∧Km
µ−→ Km+n.

(where we must still find µ). We observe that (by the Kunneth formula for reduced
homology)

Hm+n(Kn ∧Km) ∼= Hn(Kn)⊗Hm(Km) ∼= R⊗R.

Then

[Kn ∧Km,Km+n] ∼= Hm(Kn ∧Km, R) ∼= hom(Hn+m(Kn ∧Km), R) ∼= hom(R⊗R,R) 3 µ.

3.3.2 Homology, spectra, and stable homotopy

Definition 3.3.4. A homology theory is a co-cohomology theory. Explicitly, it is a collec-
tion of covariant functors hn : CW→ Ab such that

(i) hn is homotopy invariant.

(ii) If B → A→ A/B is a cofibre sequence, then it gives rise to a long exact sequence of
homology.

(iii) hn(
∨
αXα) =

∏
α hn(Xα).

Example. Homotopy is not a homology theory.

Example. Stable homotopy is a homology theory! That is,

πSn (X) := lim
→
πi+n(ΣiX),

with connecting maps
[Si+n,ΣiX]→ [ΣSi+n,ΣΣiX],

is a homology theory. It is easy to see that stable homotopy is homotopy invariant. For part
(ii), observe that πSn (X) ∼= πSn+1(ΣX), so it remains to prove that whenever B → A→ A/B
is a cofibre sequence, then there is an exact sequence πn(B) → πn(A) → πn(A/B). We
already know that there is an isomorphism πn(A,B) ∼= πn(A,B) for A, B highly connected
(which occurs in the direct limit since it works approximately when i ∼= n). This proves (ii).
Finally for (iii), we make the same argument but on crack. (Literal quote from lecturer.)
Observe that

πn+i(Σ
iX)× πn+i(Σ

iY ) ∼= πn+i(Σ
iX × ΣiY ) ∼= πn+i(Σ

iX ∨ ΣiY ).
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To be precise, the right hand side is the 2i− 1 skeleton of ΣiX ×ΣiY , so the isomorphism
on right holds approximately for order 2i and above. This proves (iii), so stable homotopy
is a homology theory as desired.

In the next lecture we will generalise this idea, and associate a homology theory to
every spectrum.
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Chapter 4

Obstruction theory

4.1 Lecture 12

Late to class (since I was talking to the police...), so the notes start briefly:
Generalisation: Let (Kn) be a spectrum. Then (X ∧ Kn)n is also a spectrum. The

homotopy groups of the spectrum is given by πnK = limi πi+n(Ki).
Claim: π∗(−∧K) is a homology theory for all spectra K. This was proved, but I missed

the proof due to lateness.

Example. • Using spheres gives stable homotopy theory.

• Using K = K(G,n) gives homology theory.

4.1.1 Postnikov towers (with a view to obstruction theory)

Motivation: Maps out of CW complex X can be defined skeletonwise. What about maps
into CW complexes? This requires data of the form

...

X2

Y X1

where X = X∞. Thus we want a construction where X is described as an inverse limit.
Let X be a CW complex. Then we can find a Postnikov tower of X, namely

34



...

X2

X X1

where πi(Xk) =

{
πi(X) i ≤ k
0 i > k.

By fibre replacement, it can be assumed that eachXk+1 →

Xk is a fibration. The fibre is K(πk+1(X), n).

Proposition 4.1.1. For an arbitrary sequence of fibrations · · · → Xk+1 → Xk → Xk−1 →
· · · , the map λ : πi lim←Xk → lim← πiXk is surjective for all i, and injective if πi+1(Xk)→
πi+1(Xk−1) is surjective for large k.

Corollary 4.1.2. X = X∞ in the Postnikov tower.

Proof. For surjectivity, let fk : Si → Xk be in πi(Xk) such that [ρ∗fk+1] = [fk]. Consider
the following diagram, and replace fk+1 with the end of it (in the homotopy):

Si Xk+1

Si × I Xk

fk+1

ι0 ρ

ρ∗fk+1∼fk

H

For injectivity, assume πi(Xk+1)→ πi(Xk) is surjective for all k. Let f : Si → limXk be in
the kernel of λ. Consider fk : S1 → Xk for each k with ρ∗fk+1 = fk, and Fk : Di+1 → Xk

with Fk|Si = fk. Then ρ∗Fk and Fk can be glued together to get gk : Si+1 → Xk (since
two copies of the disk glue to give the sphere). Since Xk+1 → Xk induces a surjective map
on homotopies, gk : Si+1 → Xk lifts to a map into Xk+1. Thus we could have chosen Fk+1

such that ρ∗Fk+1 = Fk rel Si. This gives F : Di+1 → lim←Xk as required.

Corollary 4.1.3. In a Postnikov tower of fibrations, X ∼= lim←Xk.

Definition 4.1.4. A principal fibration is a fibration of the form

F E B

ΩB′ F ′ E′ B′.

∼= ∼= ∼=
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Assume every fibration in a Postnikov tower is principal. Then the entire Postnikov tower
can be recovered by knowing the maps [Xk,K(πk+1(X), k + 2)] = Hk+2(Xk, πk+1(X)). In
summary:

Proposition 4.1.5. Obstructions to lifting are just Hk+2(Xk, πk+1(X))! We work to
formalise this some more, and clear up the assumption of principality of Postnikov towers.

4.2 Lecture 13

Recall that the theme of the current lectures is to determine when we can lift maps up
Postnikov towers:

...

K(π2(X), 2) X2

Y X1 K(π2(X), 3)

?

f

We claim that the lift ? exists if the composition f is trivial in [Y,K(π2(X), 3)] = H3(Y, π2(X)).

Theorem 4.2.1. A connected CW-complex X has a principal Postnikov tower iff the action
of π1(X) on πn(X) is trivial for n > 1.

Proof. We first prove (⇒). Suppose F → E → B is principal (with A → X lying over
F → E). The fibre of A→ X is the loop space ΩB. The action of π1(A) on πn(X,A) is the
same as the action of π1(F ) on πn(E,F ). There is a map πn(E,F ) → πn(B), which is in
fact an isomorphism by observing that they sit in the same long exact sequence. Observe
that the action of π1(F ) on πn(E,F ) becomes trivial in πn(B). It follows that π1(X) acts
trivially on πn(Xn, Xn+1). Then the first map in πk(Xn+1)→ πk(Xn)→ πk(Xn+1, Xn) is
an isomorphism except when k = n+ 2, which gives the result.

For the converse, we begin with a lemma.

Lemma 4.2.2. Let (X,A) be a CW-pair, with X,A both connected. Then the following
diagram

A X

F E B

∼
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is a principal fibration if and only if π1(A) acts trivially on πn(X,A) for all n > 1. Here
we assume the homotopy fibre of A→ X is K(G,n).

Proof. We need only show (⇐). Let πn+1(X,A) be the first non-trivial homotopy. Then
it is isomorphic to the n+ 1th homology, by Hurewicz. Then

πn+1(X,A) ∼= Hn+1(X,A) ∼= Hn+1(X/A) ∼= πn+1(X/A) ∼= G.

Consider the map X → X/A. Add higher cells to X/A to kill all homotopy groups above
n+ 1, which gives a K(G,n+ 1). Using a fibre replacement, we obtain the diagram

A X X/A

F E K(G,n+ 1)

∼

The map A→ F is a weak equivalence by the 5-lemma (since the left side of the diagram
can be extended on with K(G,n)s).

Proof. We complete the proof of the earlier theorem. (⇒) was already complete. By the
above lemma, the actions π1(X) on πk(Xn, Xn+1) are all trivial as required.

4.2.1 Moore-Postnikov towers

A more general notion is that of a Moore-Postnikov tower. I guess it’s even more of a
Postnikov tower than Postnikov towers themselves.

Definition 4.2.3. Let f : X → Y be a map between CW-complexes. A Moore-Postnikov
tower is

...

Z2

X Z1 Y

f

satisfying

• πi(X)→ πi(Zn) is an isomorphism for i < n, and surjective when i = n.
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• πi(Zn)→ πi(Y ) is an isomorphism for i > n and injective when i = n.

• The tower is made up of fibrations in the sense that

K(πn(homotopy fibre f), n)→ Zn+1 → Zn

are fibrations. This is unique up to homotopy.

Theorem 4.2.4. Every map X → Y has a Moore-Postnikov tower. If π1(X) acts on
πn(Mf , X), then this is principal.

Proof. The construction is as expected: It can be built up to satisfy the first two properties
(but not th fibration property) by gluing cells inductively. To ensure that the third property
is satisfied, we use fibre replacements as in the following diagram:

X ′2 X2

X X ′1 Y

∼

composition

Next we use a giant five lemma thing to investigate the homotopy fibres:

πi+1(Zn+1) πi+1(Zn) πi+1(Zn, Zn+1) πi(Zn+1) πi(Zn)

πi+1(Zn+1) πi+1(Y ) πi+1(Y,Zn+1) πi(Zn+1) πi(Y )

πi+1(X) πi+1(Y ) πi+1(Y,X) πi(X) πi(Y )

= =

= =

By two applications of the five lemma, we have πn+1(Zn, Zn+1) ∼= πn+1(X,Y ). Other πis
vanish. By the long exact sequence of homotopy fibres and long exact sequence of pairs,
we have

πn+1(X ′, Y ) ∼= πn(πn(homotopy fibre f)).

Principality follows from the same reason as earlier.

4.3 Lecture 14

4.3.1 Obstruction theory

Often we want to lift a map as in either of the following diagrams:
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A X Y

W W X

The left diagram we refer to as case 1, the right diagram as case 2.
Case 1. Assume X has a principal Postnikov tower. Then there is a diagram as follows:

...

X2 K(π3(X), 4)

A X X1 K(π2(X), 3)

W ∗ = X0 K(π1(X), 2)

We wish to find a lift W → X. Assume we already have the following diagram:

A Xn+1 homotopy fibre(f)

W Xn K(πn+1(X), n+ 2)
f

Then we have a lift if ωn : W ∪ CA → K(πn+1(X), n + 2) is trivial, i.e. if ωn ∈
Hn+2(W,A;πn+1(X)) is trivial.

Corollary 4.3.1. If Xis abelian and Hn+1(W,A;πn(X)) = 0, then the extension as in
case 1 is guaranteed to exist.

Now we consider the general case of the lifting problem, as in the following diagram:

A X

W Y
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This time we use Moore-Postnikov towers. Assume a principal Moore-Postnikov tower
exists, and consider the following diagram, where F denotes the homotopy fibre of the
map X → Y :

...

Z2 K(π3(F ), 4)

A X Z1 K(π2(F ), 3)

W y = Z0 K(π1(F ), 2)

Lift by covering space theory, and obtain the same conclusion as earlier:

Proposition 4.3.2. There is a liftW → X as in the previous diagram if ω ∈ Hn+1(W,A;πn(F ))
is trivial.

4.3.2 Dold-Thom theorem

Definition 4.3.3. Let X be a space, and define SPn(X) =
∏
nX/Sn. (This is the sym-

metric product, modding out by the symmetric group.) Observe that there is a map
SPn(X)→ SPn+1(X), sending (x1, . . . , xn) to (x1, . . . , xn, ∗).

Definition 4.3.4. The bigg symmetric product is SP (X) := lim→ SPn(X). SP is a
homotopy functor (from Top to Top).

Example. SP (S2) ∼= CP∞. The right side can be identified with all non-zero expressions
a0 + a1z + a2z

2 + · · · anzn up to scaling of coefficients. On the left, observe that there
is a canonical map (S2)∞ → SP (S2). The map (S2)∞ → CP∞ sending (b1, . . . , bn) →
(z − b1) · · · (z − bn) induces the claimed homeomorphism.

Theorem 4.3.5. The functor X 7→ πiSP (X), for i ≥ 1, coincides with the functor X 7→
Hi(X,Z) on the category of connected CW complexes. Wow!

Example. • SP (Sn) = K(Z, n).

• If M denotes the Moore space, then SP (M(G,n)) = K(G,n).

Proof strategy:

1. Want to show that X 7→ π∗SP (X) is a homology theory, hi.
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2. Show that hi(S2) = πi(CP∞) = Hi(S2;Z).

3. Profit.

Therefore most of the work lies in proving that X 7→ π∗SP (X) is a homology theory! This
is a very structured process, good news.

Proposition 4.3.6. X 7→ h∗(X) := π∗SP (X) is a homology theory, where X are con-
nected CW complexes.

Proof. (i) Homotopy invariance is immediate.
(iii) Want to show that hi(

∨
αXα) =

⊕
α hi(Xα). To do this, write

SP
(∨

α

Xα

)
=
∏
α

SP (Xα).

This follows from a counting argument, where the right side can be expressed as a union of
finitely many functors. The real meat of the proof is in proving the homology long exact
sequence.

(ii) We need an exact sequence

· · · → πi(SP (A))→ πi(SP (X))→ πi(SP (X/A))→ πi−1(SP (A))→ · · · .

This would follow if SP (A) → SP (X) → SP (X/A) were a fibration! But unfortunately,
it isn’t. However the result still holds if SP (A) is homotopic to the homotopy fibre of
SP (X) → SP (X/A). This is tough! Requires the notion of quasi-fibrations, and their
local-to-global properties.

Definition 4.3.7. f : E → B is called a quasi-fibration if the fibre of a point b is homotopic
to the homotopy fibre of E → B.

Lemma 4.3.8. f : E → B is a quasi-fibration if and only if πi(E, f
−1(b)) ∼= πi(B) for all

b.

Proof. They are in the same long exact sequence if and only if the above condition holds.

The next lemma is juicy, and will be proven in the next lecture.

Lemma 4.3.9. f : E → B is a quasi-fibration if any of the following hold:

1. B = V1∪V2, where each f−1(Vi)→ Vi, and f−1(V1∩V2)→ V1∩V2 is a quasi-fibration.

2. B = B1 ∪ B2 ∪ · · · , where Bi ⊂ Bi+1, and every compact K ⊂ B is supported in
K ⊂ Bk for some k, with each f−1(Vi)→ Vi a quasi-fibration.

3. There is a deformation retract Ft of E into E′ covering Ft : B → B′ such that
E′ → B′ is a quasi-fibration, and the fibres of b and F (b) are weakly equivalent for
all b.
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4.4 Lecture 15

4.4.1 Proof that symmetric products are a homology theory

Recall from the previous lecture that it remains to prove that

SP (A)→ SP (X)→ SP (X/A)

is a quasi-fibration. (Since it will then follow that · · · → πi(SP (A)) → · · · ) is a long exact
sequence, which is the remaining axiom of homology theories that needed proving.)

We already have SP (A) = p−1(∗).

Proof. Assume A ↪→ X is a cofibration. Define

Bn = SPn(X/A)

En = p−1(Bn).

Then it is sufficient to show that En → Bn is a quasi-fibration for each n. We proceed by
induction.

The base case, n = 0, is bookwork.
For the inductive step, write Bn = V ∪ (Bn \ Bn−1) for some neighbourhood V of

Bn−1. We wish to show that the restrictions of the inclusion map to V , Bn \ Bn−1, and
V ∩ (Bn \Bn−1) are quasi-fibrations.

First we deal with V . Let U = {xi : xi ∈ N for some i ≤ n}, where A ⊂ N ⊂ X, where
N is a neighbourhood of A admitting a retraction ft : X → X sending N into A. Then
p(U) ⊂ B is a neighbourhood of Bn−1 as desired.

To observe that restricting to V induces a quasi-fibration, we use the third property
of the last lemma from the previous lecture. Using ft, there exists a map Ft : E → E
retracting U to En−1. This projects to a map Bn → Bn retracting V to Bn−1. As per
the lemma, it remains to show that F1 : p−1(b)→ p−1(F1(b)) is a weak equivalence for all
b ∈ Bn.

For any w ∈ En, we can write w = ŵv, where ŵ ∈ SP (X \ A) and v ∈ SP (A). Then

F1(w) = F̂1(ŵ)v′v. (This is slightly informal, but is suggestive and can be formalised.)
Then

p−1(b) = ŵSP (A), p−1(F1(b)) = F̂1(ŵ)SP (A).

Since v′ depends only on b, one can use a path v′ → ∗ to make the map ŵSP (A) →
F̂1(ŵ)SP (A), v 7→ v′v homotopic to the “identity”. (This proof is difficult to write formally,
but the result is “obvious” when thought about intuitively.) This completes the first part
of the proof of the inductive step.

Next we require En \ En−1 → Bn \ Bn−1 to be a quasi-fibration. Observe that Bn \
Bn−1 = SPn(X \ A). The above map is defined by w 7→ ŵ. There is an inclusion of the
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right side back into the left. Consider the induced map

πi(En \ En−1, p
−1(b))→ πi(Bn \Bn−1, b).

If these are all isomorphisms, En \ En−1 → Bn \ Bn−1 is a quasi-fibration as required.
It is easily seen to be surjective. To see that it is injective, suppose g : (Dn, ∂Dn) →
(En \En−1, p

−1(b)) lies in the kernel. But then null homotopy only changes coordinates in
X \A, and En \ En−1.

This completes the proof. In summary, we have proven the Dold-Thom theorem.

43



Chapter 5

Spectral sequences

Congratulations we’ve finished Hatcher yeet!

Or have we? It turns out that there’s a secret chapter 5 of Hatcher, which covers much of
the material we’ll see in the upcoming lectures.

5.0.1 Motivation for spectral sequences

Suppose we have a chain of spaces

· · · ⊂ X−i ⊂ Xi ⊂ Xi+1 ⊂ · · · ⊂ X.

We call this a filtration. This is a common occurrence, for example expressing a topological
space with its n-skeletons. If we know the homology of each Xi, can we understand the
homology of X? This is our goal.

5.0.2 Basic terminology and notation for spectral sequences

Consider

· · · → Hn+1(Xp)→ Hn+1(Xp, Xp−1)→ Hn(Xp−1)→ Hn(Xp−1, Xp−2)→ · · · .

This is unfortunately not exact in general. But what if we consider a grid?
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Hn+1(Xp) Hn+1(Xp, Xp−1) Hn(Xp−1) Hn(Xp−1, Xp−2)

Hn+1(Xp+1) Hn+1(Xp+1, Xp) Hn(Xp) Hn(Xp, Xp−1)

Hn+1(Xp+2) Hn+1(Xp+2, Xp+1) Hn(Xp+1) Hn(Xp+1, Xp)

j k

i

We observe that some actual long exact sequences are hiding inside the grid! As shown
with the solid arrows. We consistently use the notation i, j, k for maps as given. The long
exact sequences look like “stairs”. Define

A =
⊕
n,p

Hn(Xp), E =
⊕
n,p

Hn(Xp, Xp−1).

Then our huge grid can be summarised in the following cute exact triangle!

A A

E

i

jk

Each map has a “bidegree”, by inspecting how it changes the coordinates (n, p). Specifi-
cally, the bidegrees are:

deg i = (0, 1), deg j = (0, 0), deg k = (−1,−1).

Keeping these bidegrees and the exact triangle in mind, a lot of theory can be developed
without worrying about the notational struggles of the above grid.

Remark. We observe that ik = ji = kj = 0. However, there is one more composition we
can make, namely jk : E → E. We denote this by d := jk. We observe that d2 = 0, and
in the setting of CW-complexes, this corresponds to the cell boundary map!

5.1 Lecture16

5.1.1 Basically homological algebra

Recall that at the end of the previous lecture, we defined the map

d = jk : E → E
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and observed that it was genuinely a differential in the sense that d2 = 0. Using this we
define a derived exact triangle:

A′ A′

E′

i′

j′k′

Here E′ = ker d/ im d, A′ = im i = i(A), and j′ : A′ → E′ is defined by

j′(a′) = j′(ia) := j(a).

This is well defined by a standard homological algebra type argument, in which we show
that if ia1 = ia2, then j(a1 − a2) ∈ im d. Next we define i′ : A′ → A′ to simply be the
restriction of i, nice! Finally we define k′ : E′ → A′ to be

k′([e]) = k(e) ∈ ker j = im i = A′.

Similarly if [e] = 0 then we can show that e ∈ ker k.

Lemma 5.1.1. The derived triangle of an exact triangle is exact.

Proof. Firstly, ker j′ = im i′. For one inclusion, suppose a′ ∈ A′ is in the image of i′. Then
a′ = iia for some a. But then

j′(a′) = j′(iia) = j(ia) = 0.

For the opposite inclusion, suppose j′a′ = 0. Then ja ∈ im d,. . . . Using standard chasing
arguments the inclusion follows. Similarly exactness holds in the two other corners.

What really matters is keeping track of bidegrees. Do the maps in the derived exact
triangle have the same bidegrees? We find that

deg i′ = (0, 1), deg j′ = (0,−1), deg k′ = (−1,−1).

But now we can continue inductively constructing derived triangles:

Ar Ar

Er

ir

jrkr
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where dr : Er → Er is defined to be jr−1kr−1, and the rest of the maps and spaces are
defined in the same way as above.

Explicitly, unpacking the triangles, we have the following two yuge diagrams, with
double arrows denoting the exact sequence traced out by the exact triangles:

An+1,p En+1,p An,p−1 En,p−1

An+1,p+1 En+1,p+1 An,p En,p

An+1,p+2 En+1,p+2 An,p+1 En,p+1

j k

i

A2
n+1,p E2

n+1,p A2
n,p−1 E2

n,p−1

A2
n+1,p+1 E2

n+1,p+1 A2
n,p E2

n,p

A2
n+1,p+2 E2

n+1,p+2 A2
n,p+1 E2

n,p+1

k′

i′
j′

In the first diagram above, d maps in the horizontal direction, i.e. it has bidegree (−1,−1)
. In the second diagram, d2 maps diagonally upwards! It has bidegree (−1,−2). In general
dr has bidegree (−1,−r). We make some assumptions now to make spectral sequences
manageable:

(i) Almost all maps i are isomorphisms. I.e. almost all E′n,p = E2
n,p are trivial. Observe

that it then makes sense to write An,∞, An,−∞, E
∞
n,p.

(ii) An,∞ = 0

(iii) An,−∞ = 0.
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Proposition 5.1.2. If (i) and (ii) above hold, then

E∞n,p = F pn/F
p−1
n ,

where F pn = im(An,p → An,∞) is the map in the filtration

F pn → F p+1
n → · · · → An,∞.

If (i) and (iii) above hold, then

E∞n,p = Fn−1
p /Fnp ,

where Fn−1
p = ker(An,−∞ → An−1,p).

Proof. Since these two statements are dual, we prove only one of them. Assume (i) and
(ii) hold. Let r be large. We have a long exact sequence

0 = Ern+1,p+r−1 Arn,p+r−2

An,p+r−1 Ern,p Arn−1,p−1

Arn−1,p Ern−1,p+1−r = 0

kr

ir

jr
kr

ir

jr

where the start and end Ers vanish by choosing large enough r. We then conclude that
Arn−1,p and Arn−1,p−1 vanish, so

Ern,p =
Arn,p+r−1

Arn,p+r−2

.

Since E stabilises we conclude that

E∞n,p =
F pn

F p−1
n

as required.

5.2 Lecture 17

5.2.1 Quick review of spectral sequences to here

A quick review of things to here: the basic objects we want to study are filtrations of
spaces, · · ·Xp ⊂ Xp+1 ⊂ · · · . We define An,p to be Hn(Xp), and En,p = Hn(Xp, Xp−1).
We assume only finitely many of these are non-zero.

We then have an exact triangle
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A A

E

i

jk

and define a differential by d = kj. From here we can construct derived triangles

Ar Ar

Er

i

jk

where the maps have bidegree

deg i = (0, 1), deg j = (0,−r + 1), deg k = (−1,−1),deg d = (−1,−r),

and Er+1
n,p = ker dr/ im dr.

If An,−∞ = 0, then E∞n,p = F pn/F
p−1
n , where F pn = im(A1

n,p → A1
n,p), and the F pn form a

filtration. We write that Ern,p ⇒ An,∞, and say it converges to An,∞.

5.2.2 Arranging spectral sequences on a grid!

We originally had En,p, but now we substitute n = p+ q, so that

Ep+q,p  Ep,q

is the new indexing. Then with these indices, dr : Erp,q → Erp,q has bidegree (−r, r−1). On
page 1, we have

E1
1,2 E1

2,2 E1
3,2

E1
1,1 E1

2,1 E1
3,2.

d1 d1

d1 d1

On page 2, we have

E2
1,2 E2

2,2 E2
3,2

E2
1,1 E2

2,1 E2
3,2.

d2 d2 d2

Zooming all the way up to the infinitieth page, we have
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E∞1,2 E∞2,2 E∞3,2

E∞1,1 E∞2,1 E∞3,2.

There are no non-zero differentials anymore, and the diagonals E∞a,b with a+b = p+q form
the building blocks of Ap+q,∞.

5.2.3 Serre spectral sequence

Let π : X → B be a fibration, with B a path-connected CW complex. Let Bp denote the
p-skeleton of B. Then (B,Bp) is p-connected. Set Xp = π−1(Bp) ⊂ X. Then (X,Xp) is
also p-connected!

We consider the spectral sequence Ep,q = Hp+q(Xp, Xp−1;G) built from the filtration
Xp ⊂ Xp+1 ⊂ · · · . Observe that Ep,q = 0 whenever either p or q is negative, so this spectral
sequence lives in the first quadrant.

Proposition 5.2.1. The E2-page of the Serre spectral sequence is given by E2
p,q
∼=

Hp(B;Hq(F ;G)) if the π1(B) action on Hk(F,G) is trivial. Here F denotes the fibre
of X → B.

Example. Suppose X = B × F so that the fibration is trivial. By the Künneth formula,
Hn(X;G) ∼=

⊕
p+q=nHp(B;Hq(F ;G)). But this is literally Hn(X;G) ∼=

⊕
p+q=nE

2
p,q!

Nice. This shows that the Serre spectral sequence converges on page two (differentials
above page two are all trivial) so we can compute the homologies of X by just computing
E2
p,q.

Another example is S1 ' K(Z, 1) = ΩK(Z, 2)→ E0(K(Z, 2))→ K(Z, 2). (Recall that
E0(K(Z, 2)) is the path space of K(Z, 2).) The path space is homotopic to a point. Thus we
know the homology of the fibre (S1) and the homology of the total space (∗), so hopefully
we can use the Serre spectral sequence to determine the homologies of K(Z, 2). On the
E2 page, we have E2

p,q = Hp(K(Z, 2);Hq(S1;G)). We can now calculate the E2 page: E2
p,q

must vanish when q < 0 or q > 1. We can also observe that E2
0,0 = E2

0,1 = Z. From this

is follows that E2
p,q = Z whenever p is even and q ∈ {0, 1}. Otherwise E2

p,q vanishes. Thus
Hp(K(Z, 2);Z) is Z for p even, and 0 otherwise. This is CP∞!

How about ΩSn → E0Sn → Sn? Again study the E2 page. We have E2
0,0 = Z, then a

bunch of zeroes, then E2
n,0 = Z. To kill E2

n,0 on the next page, it must have an injective
map out of it, which is necessarily dn. Thus by computing,

Hg(ΩSn,Z) =

{
Z g = kn− k
0 otherwise.
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5.3 Lecture 18

5.3.1 Serre spectral sequence proof outline

Another example is as follows: consider

0→ Z/2→ Z/4→ Z/2→ 0.

This gives rise to a fibration

K(Z/2, 1)→ K(Z/4, 1)→ K(Z/2, 1) ∼= RP∞.

Again look at the second page of the Serre spectral sequence. We find that

E2
p,q =



Z p = q = 0

Z/2 q = 0, p odd

Z/2 q = 0, p even, non-zero

Z/2 q odd

0 otherwise.

From here we argue that Hn(K(Z/4, 1)) = Z/4 if n is odd, and zero otherwise.
Recall that in the previous lecture we never actually proved the Serre spectral sequence.

We do this now.

Proposition 5.3.1. The E2-page of the Serre spectral sequence is given by E2
p,q
∼=

Hp(B;Hq(F ;G)) if the π1(B) action on Hk(F,G) is trivial. Here F denotes the fibre
of X → B.

Proof. We know the E1 page consists of rows as follows: We prove the vertical maps below
are isomorphisms.

Hp+q−1(Xp−1, Xp−2) Hp+q(Xp, Xp−1)

Hp−1(Bp−1, Bp−2)⊗Hq(F ) ∼= Cp−1(B) Hp(Bp, Bp−1)⊗Hq(F ) ∼= Cp(B)

We construct vertical isomorphisms as follows: consider all p-cells of B: lift (Dp
α, S

p−1
α )→

(Bp, Bp−1) to (D̃p
α, S̃

p−1
α )→ (Xp, Xp−1). We then obtain a map⊕

α

Hp+q(D̃
p
α, S̃

p−1
α ;G)→ Hp+q(Xp, Xp−1).

The claim is that this map is an isomorphism.
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This is shown by considering tubular neighbourhoods and “thickening up spheres”. By
the excision theorem we can now conclude that

H∗(Xp, Xp−1;G) = H∗(
∐
α

(D̃p
α, S̃

p−1
α )).

Observe that there is an isomorphism⊕
α

Hq(F,G) ∼= Hp(Bp, Bp−1)⊗Hq(F,G).

We wish to show that there is an isomorphism⊕
α

Hp+q(D̃
p
α, S̃

p−1
α ;G) ∼=

⊕
α

Hq(F,G).

We construct the isomorphism by writing ∂Dp
α = Dp−1

+ ∪Sp−2 Dp−1
− . This gives an iso-

morphism Hp+q(D̃
p
α, S̃

p−1
α ;G) ∼= Hp+q−1(S̃p−1

α , D̃p−1
− ;G). The right side is isomorphic to

Hp+q−1(D̃p−1
α , S̃p−2

α ;G) by the excision theorem. Inductively we can continue this process
until we have

Hp+q(D̃
p
α, S̃

p−1
α ;G) ∼= Hq(D̃

0;G) ∼= Hq(F ;G).

The last isomorphism holds when the π1(B) action is trivial, and hence this proves the
proposition.

5.3.2 Serre spectral sequence II: cohomological edition

Theorem 5.3.2. For a fibration F → E → B with π1(B) acting on H∗(E) trivially, there
is a spectral sequence with Hp,q

1 = Hp+q(Xp, Xp−1, G), and Ep,q2 = Hp(B,Hq(F,G)). We

have dr : Ep,qr → Ep+r,q−r+1
r , and Ep,n−p∞ ∼= Fnp /F

n
p+1, where F is a filtration 0 ⊂ Fnn ⊂

· · · ⊂ Fn0 = Hn(X,G).

A nice property of the cohomological theory is that there is a multiplicative structure:

Theorem 5.3.3. There is a multiplication map

Ep,qr × Es,tr → Ep+s,q+tr

such that

(a) d(xy) = (dx)y + (−1)p+qx(dy)

(b) On the second page, Ep,q2 × Es,t2 → Ep+s,q+t2 is (−1)st times the usual cup product:

Hp(B,Hq(F ))×Hs(B,Ht(F ))→ Hp+s(B,Hq+t(F )).

(c) The product respects filtrations.

Observe that (a) and (b) determines the product everywhere: assume the product
is defined on Er. Choose x, y ∈ Ep,qr+1, and let x = [x′], y = [y′], xy = [x′y′]. Then if
x′ − x′′ = dx̃ and y′ − y′′ = dỹ, one can show that x′y′ − x′′y′′ lives in the image of d as
required.
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5.4 Lecture 19

5.4.1 More spectral examples

Example. Consider K(Z, 1) ∼= S1 → E ∼= ∗ → K(Z, 2) ∼= CP∞. Inspect the second page
of the Serre spectral sequence (of cohomology). Then we have E0,0

2 = Z, E0,1
2 = Z 3 a,

where x 7→ xa is the map from E0,0
2 to E0,1

2 . The differential from E0,1
2 to E2,0

2 maps a to
some x2. Continuing this process, d(x2a) = x4 = x2

2, and x2n = xn2 in general. Therefore
H∗(K(Z, 2),Z) = Z[x2], where x2 has degree 2.

Example. Next we investigate H∗(ΩSn,Z). Consider ΩSn → E ∼= ∗ → Sn. A similar
derivation gives

E0,0
n = Z, E0,n−1

n = Z 3 a1, E
0,2n−2
n = Z 3 a2

and so on. The differentials map from Ep,q2 → Ep+n,q−n−1
2 , sending a1 to x, a2 to a1x, and

an to an−1x more generally.
In the case where n is odd, we can derive that ak1 = k!ak. This gives H∗(ΩS1,Z) = ΓZ[a],

with the degree of a = n− 1. “Divided polynomial something algebra”.
In the case where n is even, the computations are a little more involved, but we can

derive that ak2 = k!a2k. Then H∗(ΩSn,Z) = Λ(a)⊗ ΓZ[b], where a has degree n− 1, and b
has degree 2n− 2.

Example. Homotopy of S3! Consider the map S3 → K(Z, 3) which is an isomorphism
on π3. The map has a fibre X which is necessarily 3-connected. But X → S3 is itself a
fibration, with fibre K(Z, 2). We investigate this fibration.

A priori we know that E0,0
2 = Z, and E3,0

2 = Z. Since K(Z, 2) is CP∞, we also have

Z = E0,q
2 = E3,q

2 for all even q. Since X is 3-connected, d : E0,2
2 → E3,0

2 must be an

isomorphism. The other differentials d : E0,q
2 → E3,q

2 are not necessarily isomorphisms,
but we now see that they are multiplication by q. It follows that H2n(X,Z) = 0, while
H2n+1(X,Z) = Z/nZ. Crazy!

By the universal coefficient theorem (since the cohomology is sufficiently sparse) we
have isomorphisms between cohomology and homology. That is, H2n−1(X,Z) = 0, and
H2n(X,Z) = Z/nZ. This shows that the first p-torsion in homology of X appears in
degree 2p. By “p-torsion Hurewicz”, the first p-torsion in homology appears in the first
p-torsion of homotopy. That is, π2p(X) is the first homotopy group with p-torsion! But this
is the same as π2p(S3) = Z/pZ. This also gives a stable homotopy group, πs1(S) = Z/2Z.

The above example made use of p-torsion Hurewicz. What is this?
Let C ⊂ Ab be a full subcategory, i.e.

1. If 0→ A→ B → C → 0 and A,C ∈ C, then B ∈ C.

2. If A,B are in C, then their tensor products and Tor are in C.
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Theorem 5.4.1. Let X be path connected, abelian. Suppose πi(X) ∈ C whenever i < n.
Then πi(X)→ Hi(X) is an isomorphism, modulo C.

Example. Let C denote the abelian groups without p-torsion.

Proof. Makes use of Postnikov towers and spectral sequences!

5.5 Lecture 20

Example. What is the cohomology H∗(K(Z, 3),Z)? Consider the exact sequence

CP∞ ∼= K(Z, 2)→ E ∼= ∗ → K(Z, 3).

We investigate the second page of the Serre spectral sequence as usual. Then E0,2n
2
∼= Z,

with generators an. We find that E2 = E3 since the spectral sequence is concentrated on
even rows, and on the third page, the differentials map from Ep,q3 → Ep+3,q−2

3 . By the
Leibniz rule, we find that the differentials are multiplication maps: d(ak) = kak−1da =
kak−1x. (But the column of p = 3 is given by E3,2n

3
∼= Z, with generators anx.)
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Chapter 6

Localisation of spaces

Recall from algebra that localisations are the objects given by a universal construction to
introduce units. For example,

Z(p) ⊂ Q

consists of the integers where elements relatively prime to p are forced to be units, i.e. Z(p)

consists of fractions with denominators relatively prime to p. Localisations are local rings,
in the sense that they have a unique maximal ideal.

Goal: can we invent an analogous notion for topological spaces? We wish to construct
X(p) such that

π∗(X)⊗ Z(p)
∼= π∗(X(p)), H∗(X)⊗ Z(p)

∼= H∗(X(p)).

Remark. Localisation of rings is an exact functor.

Definition 6.0.1. Let X be an abelian space. X is said to be P-local if πi(X) is a ZP -
module. X → X ′ is a P-localisation if π∗(X)⊗ZP maps isomorphically onto π∗(X

′)⊗ZP ∼=
π∗(X

′).

In the above, P denotes any set of prime numbers in Z. ZP is the collection of fractions
with denominators relatively prime to all of P.

Theorem 6.0.2. (a) For every abelian space, there is a P-localisation X → X ′.

(b) X → X ′ is a P-localisation if and only if H∗(X
′) is a P-module and H∗(X) ⊗ ZP →

H∗(X
′) is an isomorphism.

(c) This gives a homotopy functor from abelian topological spaces to P-local topological
spaces. In particular, X ′ is well defined up to homotopy.

Corollary 6.0.3. As a corollary of (b), (Sn)(p)
∼= M(Z(p), n).
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Remark. Let F → E → B be a fibre sequence. If two out of three are P-local, then so is
the third.

Proof. We begin by proving (a) assuming the forwards direction of (b). We use Postnikov
towers of X. Consider the following diagram:

X3

K(π2, 4) X2 X ′2

K(π1, 3) X1 = K(π1(X), 1) X ′1 = K(π1(X)(p), 1) K(π2P , 3)

5

3

3

4

1 2

Consider the natural map π1(X)→ π1(X)P . Then X1 → X ′1 a P-localisation implies that
H∗(X ′, X;A) = 0, where A is any ZP -module. We have a map 1 as above.

Next we construct 2 by using the natural map π2 → π2P and using results from ob-
struction theory. Now the maps 3 arise by constructing X ′2 as the fibre, and continue
inductively for the rest of the maps to build a Postnikov tower of X ′. This defines X ′.

∼

Next we prove the forwards direction of (b). One can verify that it is indeed true for
S′ = K(Z, 1), and X ′ = M(ZP, 1). Then it holds for X = K(ZP , 1) and X = K(Z(p), 1),
with p not in P. By the Künneth formula, the result is true for K(π, 1) with π a finitely
generated abelian group.

Fact : Suppose F → E → B is a fibration and π1(B) acts trivially on H∗(E). Then if
two of H̃∗(F ), H̃∗(E), H̃∗(B) are P-local, then so is the third. This follows from the Serre
spectral sequence.

Using this, since we haveK(π, n−1)→ E ∼= ∗ → K(π, n), using Postnikov towers allows
the result to inductively generalise to all X, since we also have Xn+1 → Xn → K(π, n+2).

∼

To finish part (b), we must prove the reverse direction. Consider a localisation X → X ′′

and a homology localisation X → X ′. Recall that H∗(X ′, X,A) = 0 for all ZP -modules A.
By obstruction theory this allows us to lift X → X ′ to the map X → X ′′. The lift X ′ → X
is a homotopy equivalence by p-torsion Hurewicz from the previous lecture.

Part (c) is left as an exercise.
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Chapter 7

Model Categories

7.1 Lecture 21

7.1.1 Initial definitions

A problem concerning homotopies is the following. What are the pushouts of the following
two diagrams?

S1 ∗ S1 D2

∗ ? D2 ?

It’s clear that the two diagrams are homotopy equivalent. But what are their pushouts?
The pushout of the first diagram is ∗, while the pushout of the second diagram is S2. Oh
no! These aren’t homotopy equivalent.

How do we fix this? We must understand homotopy structures on categories.

Definition 7.1.1. A model category is a category C such that

• C has all small limits and colimits

• There are classes of morphisms called weak equivalences, fibrations, and cofibrations.
These necessarily satisfy the two-out-of-three property, namely if any two maps in a
commuting triangle belong to one of the classes, so does the other.

• These classes are all closed under retracts.

• Trivial cofibrations have the left-lifting property with respect to fibrations, and cofi-
brations have the left-lifting property with respect to trivial fibrations.

57



• There is a functorial factorisation of any f : X → Y into a composition X ↪→ Y ′ � Y
where the former is a cofibration and the latter a weak equivalence, as well as a
factorisation X ↪→ X ′ � Y where the former is a weak equivalence and the latter a
fibration.

Example. • The category of topological spaces is a Model category.

• There are three trivial model category structures on any category.

• If a category is a model category, so is its opposite category.

Remark. We hereafter use � to denote fibrations, and ↪→ to denote cofibrations.

Every model category has initial and terminal objects, denoted ∅ and ∗ respectively.
X is called fibrant if there is a fibration X � ∗, and cofibrant if ∅ ↪→ X.

There are functors Q,R : C → C such that ∅ ↪→ QX � X, where the fibration is a
weak equivalence. On the other hand, R satisfies X ↪→ RX � ∗, where the former is a
weak equivalence.

We can form “pointed” categories by modding out by the terminal object.

Lemma 7.1.2. Let C be a model category. Then f is a cofibration if and only if f has the
left lifting property with respect to trivial fibrations. Similarly, f is a trivial cofibration if
and only if it has the left lifting property with respect to fibrations.

Remark. This shows that the definition of a model category is overdetermined: if we
know the weak equivalences and cofibrations, we know the fibrations etc.

Proof. One direction for each claim is immediate by the definition.
For the converse, assume f : A→ B has the left lifting property with respect to trivial

fibrations. By expressing what this means in terms of diagrams, the result follows

Corollary 7.1.3. Cofibrations are preserved under pushout, and fibrations are preserved
under pullback.

Theorem 7.1.4 (Ken Brown’s Lemma). Let F : C → D be a functor between model
categories. If F sends trivial cofibrations between cofibrant objects to weak equivalences,
then F sends all weak equivalences between cofibrant objects to weak equivalences. The dual
statement also holds.

Proof. If f : A → B is a weak equivalence and A,B are cofibrant, consider the following
diagram:

58



A

A tB B′ B

B

∼

∼

∼

∼

∼

The dotted arrows are weak equivalence cofibrations by two-out-of-three. Apply the functor
and apply two-out-of-three properties again to abtain the conclusion.

7.1.2 Homotopy categories

Definition 7.1.5. If C is a model category, then its homotopy category Ho C has objects
ob(C), and morphisms mor(Ho C) the morphisms in C along with declared inverses for weak
equivalences.

Remark. It isn’t clear that Ho C is is a set! There are some set theoretic issues that need
to be resolved.

Proposition 7.1.6. Let Cc, Cf , Ccf be the subcategories consisting of cofibrant, fibrant,
and cofibrant-fibrant objects. Then Ho C is isomorphic to Ho Cf and Ho Cc, while Ho C is
equivalent to Ho Cf and Ho Cc.

Proof. We give a proof strategy that Ho C is a set. Define “cylinder” and “path” objects.
This gives a notion of left and right homotopies between maps, and then homotopy equiv-
alences. On fibrant-cofibrant objects, left and right homotopy homotopies can be shown
to be the same, so that homotopy equivalence is the same as weak equivalence. It follows
that the homotopy category is obtained as a quotient of the original category by homotopy
equivalence, which is a set.

7.2 Lecture 22

7.2.1 Quillen functors

Definition 7.2.1. Let C,D be model categories. F : C → D is a left Quillen functor if it
is a left adjoint and preserves trivial cofibrations. Similarly U : D → C is right Quillen if it
is right adjoint and preserves trivial fibrations.

Lemma 7.2.2. If F : C ↔ D : U is an adjunction, then L is left Quillen if and only if U
is right Quillen.
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Proof. Exercise. Follows from diagram chasing.

Remark. By Ken Brown’s lemma, Quillen functors preserve weak equivalences between
(co)fibrant objects.

Example. c : C → CI : lim is an adjunction of Quillen functors, where c is the constant
functor and CI is the diagram category.

7.2.2 Derived functors

Let C,D be model categories. If F : C → D is left Quillen, then

Ho C Ho Cc HoDQ

LF

F

is the Left derived functor. We must jump through the cofibre replacement to ensure that
the maps are well defined. Similarly, if U : D → C is right Quillen, then

HoD HoDf Ho CR

RU

U

is the Right derived functor.

Theorem 7.2.3. Left and right derived functors are well defined and sufficiently natural.

Lemma 7.2.4. If F : C ↔ D : U is a Quillen pair, there is an adjunction LF : Ho C ↔
HoD : RF

Proof. We want to show that HoD(LFX, Y ) ∼= Ho C(X,RUY ). The left side is a quotient
of D(FQX,RY ), and the right side is a quotient of C(QX,URY ). Prior to quotients, there
is an isomorphism D(FQX,RY ) → C(QX,URY ) since F,U are adjoint. It remains to
verify that the equivalence relations are respected by this isomorphism.

To this end, suppose ∅ ↪→ A ∈ C, and B � ∗ ∈ D, and f, g : FA→ B are homotopic.
Then we can show that ϕf is homotopic to ϕg by considering the appropriate diagram
and applying the functor U . Similarly by applying F , we find that two homotopic maps
A→ UB come from homotopic maps.

7.2.3 Quillen equivalences

Definition 7.2.5. “Weak equivalences on the right come from weak equivalences on the
left.”

A Quillen adjunction F : C ↔ D : U is a Quillen equivalence if for all ∅ ↪→ X ∈ C and
Y � ∗ ∈ D, FX → Y is a weak equivalence if and only if X → UY is a weak equivalence.
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Proposition 7.2.6. Let F : C ↔ D : U be a Quillen adjunction. The following are
equivalent:

(a) (F,U) is a Quillen equivalence.

(b) X → UFX → URFX and FQUY → FUY → Y are equivalences for all X ∈ Cc,
Y ∈ Df .

(c) LF,RU are adjoint equivalences Ho C ↔ HoD.

Proof. (a) to (b): suppose (F,U) is a Quillen equivalence. Note that FX → RFX is a
weak equivalence, so the adjoint X → URFX is a weak equivalence. Similarly FQUY →
FUY → Y is a weak equivalence.

(b) to (a): Let f : FX → Y be a weak equivalence. We must show that ϕf : X → UY
is a weak equivalence. This follows by inspecting the following diagram:

X UFX UY

X URFX URY.

=

ϕf

∼

∼

Finally the equivalence of (b) and (c) comes from the diagram

X QX URFX

(RU)(LF )X

∼

∼

∼

=

Corollary 7.2.7. Suppose F,U are Quillen adjoints. The following are equivalent:

(a) (F,U) is a Quillen equivalence.

(b) F reflects equivalences between cofibrant objects and FQUY → Y .

(c) U reflects equivalences between fibrant objects analogously.

61



7.3 Lecture 23

7.3.1 Small object argument

An ordinal is a category λ with exactly one morphism between all objects:

• → • → • → · · · .

These give λ-sequence in any C

X1 → X2 → X3 → · · · .

These sequences might be very large (they’re rarely countable). We will pretend λ = ∞
(countable infinity) for simplicity.

Another heuristic definition: A ∈ C is small with respect to a class of morphisms D if
there is λ such that for λ-or-bigger-sequences X0 → X1 → · · · , any map A → colimλXβ

factors through A→ Xβ.

Example. Every set is small.

Proof. Use λ = |S|.

Definition 7.3.1. If I is a class of morphisms in C, I-inj is defined to be the collection of
morphisms f with the following lifting property:

• •

• •

g∈I f
∃

Similarly I-proj is the collection of morphisms with the dual property.
I-cof is defined to be (I-inj)-proj, and I-fib is defined to be (I-proj)-inj.

Example. If C is a model category, and I are the trivial cofibrations, then I-inj are the
fibrations and I-proj are the trivial cofibrations.

The idea is to use this to “generate” fibrations and cofibrations on a model category.
Lifting properties will be easy to verify, but functoriality might be hard.

Definition 7.3.2. Let C be a category containing all small colimits, I a class of maps.
Then I-cell is the class of “relative I-cell complexes”, i.e. compositions of pushouts

Cβ Xβ

Cβ+1 Xβ+1

g∈I
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Remark. These should intuitively be thought of as something like CW-complexes.

Lemma 7.3.3. I-cell is a subset of I-cof.

Proof. Follows from universal property of pushouts.

Theorem 7.3.4 (Small object argument). Let C be a category with small colimits, I a class
of maps. Suppose the domains of I are small relative to I-cell. Then there is a functorial
factorisation (γ, δ) such that f = δ(f) ◦ γ(f) and γ(f) ∈ I-cell, δ(f) ∈ I-inj.

Proof. Let f : X → Y . We will define functorially

X = Zf0 → Zf1 → · · · → Zfβ → · · ·

with Zfβ → Y , and Zfβ → Zfβ+1 ∈ I-cell. Set γ(f) : X → colimβZ
f
β , and δ(f) : colimβZ

f
β →

Y . Why can we do this? Consider the collection of squares

Ai Zfβ

Bi Y

g∈I

and glue them together to form∐
Ai Zfβ

∐
Bi Zfβ+1

Y.

∐
g

Then it is immediate that γ(f) is in I-cell. It remains to verify that δ(f) is in I-inj.
Consider the following diagram

A colimβZ
f
β

B Y.

g∈I δ(f)

63



By smallness, this factors as follows. Observe that the horizontal map at the bottom is
exactly a desired “lift”.

A Zfβ

B Zfβ+1

Y

g∈I δ(f)

lift

Definition 7.3.5. If C is a model category, it is said to be cofibrantly generated if there
are classes of maps I, J such that

• the domains of I are small relative to I-cell,

• domains of J are small relative to J-cell,

• fibrations are J-inj,

• cofibrations are I-cof,

• trivial fibrations are I-inj.

Remark. All known model categories are cofibrantly generated.

Remark. There is no analogue for “fibrantly generated” model categories, as it requires
the notion of co-small objects, which doesn’t appear in nature.

Theorem 7.3.6. Let C be a category with small (co)limits. Let W ⊂ C be a subcategory,
I, J classes in C. Then C is a cofibrantly generated model category if

• W satisfies two-out-three,

• Objects are small with respect to I, J ,

• J-cell is a subset of W ∩ I-cof,

• I-inj is a subset of W ∩ J-inj,

• Either one of the above is an equality.

Proof. Most parts of the proof follow from the small object argument applied to I and J .
Left to verify that lifting properties are verified as below:
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• •

• •

∈I-cof ∈J-inj∩W

7.4 Lecture 24

7.4.1 Examples of model categories

Example. Let R be a ring. Then Ch(R) is a model category, with I = {Sn−1 → Dn−1},
where Sn−1 is defined to be the complex 0 → R → 0 for some degree n − 1 R, and Dn is
0→ R→ R→ 0, where R is degree n.

Then J = {0 → Dn}, and W = {f : H∗(f) are isomorphisms}. We find that X → Y
is a fibration if and only if Xn → Yn is a surjection for each n, and if X is cofibrant, then
all Xn are projective. Conversely, if X is left fibrant and each Xn is projective, then X is
cofibrant.

ι : A→ B is cofibrant if and only if it splits dimensionwise with cofibrant cokernels.

Example. The canonical examples are of course created from Top. Top itself is a model
category, with W the weak equivalences, I = {Sn → Dn}, J = {Dn → Dn × I}. Note that
every topological space is fibrant.

Remark. Top is only small with respect to injections.

7.4.2 Simplicial sets

Remark. There are many different model category structures on simplicial sets. The
two “important ones” are precisely the structures that turn simplicial sets into topological
spaces, and one that gives rise to all infinity categories.

Definition 7.4.1. We write [n] = [0→ 1→ 2→ · · · → n]. Then ∆ denotes

∆ = {[n] with order preserving maps}.

We have maps between [n] and [n+ 1], the number of maps can be counted. e.g. there are
two maps [0]→ [1] called “degeneracy maps”, and two maps [2]→ [1] called “face maps”.

Definition 7.4.2. The category of simplicial sets SSet is defined by

SSet = Set∆op
.

65



Remark. Each X0 is interpreted as a point, X1 as an interval, X2 as a triangle, and so
on.

Definition 7.4.3. More generally, given any category C, it has a corresponding simplicial
category,

SC = C∆op
.

Lemma 7.4.4. Every simplicial set is small.

We have a map ∆ → SSet, and hence a map ∆op ×∆ → Set, which we can write by
([n], [m]) 7→ ∆([n], [m]). In particular, we have (∆[n])n = ∆([n], [n]) which consists of one
non-degenerate n-simplex, and (∆[n]), n− 1 consists of n+1 non-degenerate n−1-simplies.
This is exactly an n-simplex in the topological sense!

As an example,

∆[0] ∼= ·
∆[1] ∼= −
∆[2] ∼= 4

∂∆[n] denotes the boundary of ∆[n], and Λk[n] denotes the kth horn of ∆[n].
∆ is formally a functor. Given any simplicial set K,

∆K = {∆[n]→ K, for all n}.

This is called the triangulation of K. The colimit of (∆K → SSet) is K.

Remark. This are looking pretty topological, but we still don’t have a precise way of
realising simplicial sets as topological spaces. Time to remedy this!

Definition 7.4.5. Let |∆[n]| ⊂ Rn be defined by

|∆[n]| = {x0 + · · ·+ xn = 1 : xi ≥ 0}.

The geometric realisation map from ∆ to Top is

|∆[−]| : ∆→ Top.

Given any simplicial set K, its geometric realisation is

|K| := colim∆K | − |.

Proposition 7.4.6. Geometric realisation is a left adjoint to the Sing functor, where
Sing(X) = Maps(|∆[n]|, X).

66



Proof. The key idea: it suffices to verify the adjunction for smaller pieces of simplicial sets,
since every simplicial set can be realised as a colimit. That is, it remains to show

SSet(∆[n],Sing(|∆[m]|)) = Top(|∆[n]|, |∆[m]|).

This follows from unpacking some definitions

Lemma 7.4.7. Geometric realisation from SSet to compactly generated topological spaces
preserves products.

Proof. Proof idea: it suffices to show that |∆[n]×∆[m]| = |∆[n]|× |∆[m]|. Combinatorics.

Remark. Geometric realisation preserves all small limits and colimits.

7.5 Lecture 25

This lecture and all subsequent lectures were cancelled due to the COVID-19 outbreak.
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