
CME 193: Introduction to Scientific Python

Lecture 4: File I/O and Classes

Sven Schmit

stanford.edu/~schmit/cme193

4: File I/O and Classes 4-1

stanford.edu/~schmit/cme193

Feedback form

Please take a moment to fill out feedback form

http://goo.gl/forms/NBkBXWgnCC

Note: link also on couse website.

4: File I/O and Classes 4-2

http://goo.gl/forms/NBkBXWgnCC

Contents

File I/O

Classes

Exercises

4: File I/O and Classes 4-3

File I/O

How to read from and write to disk.

4: File I/O and Classes 4-4

The file object

Interaction with the file system is pretty straightforward in Python.

Done using file objects

We can instantiate a file object using open or file

4: File I/O and Classes 4-5

Opening a file

f = open(filename, option)

filename: path and filename

option:

’r’ read file

’w’ write to file

’a’ append to file

We need to close a file after we are done: f.close()

4: File I/O and Classes 4-6

with open() as f

Very useful way to open, read/write and close file:

with open(’data/text_file.txt’, ’r’) as f:
print f.read()

4: File I/O and Classes 4-7

Reading files

read() Read entire line (or first n characters, if supplied)

readline() Reads a single line per call

readlines() Returns a list with lines (splits at newline)

Another fast option to read a file

with open(’f.txt’, ’r’) as f:
for line in f:

print line

4: File I/O and Classes 4-8

Reading files

read() Read entire line (or first n characters, if supplied)

readline() Reads a single line per call

readlines() Returns a list with lines (splits at newline)

Another fast option to read a file

with open(’f.txt’, ’r’) as f:
for line in f:

print line

4: File I/O and Classes 4-9

Writing to file

Use write() to write to a file

with open(filename, ’w’) as f:
f.write("Hello, {}!\n".format(name))

4: File I/O and Classes 4-10

More writing examples

write elements of list to file
with open(filename, ’w’) as f:

for x in xs:
f.write(’{}\n’.format(x))

write elements of dictionary to file
with open(filename, ’w’) as f:

for k, v in d.iteritems():
f.write(’{}: {}\n’.format(k, v))

4: File I/O and Classes 4-11

Contents

File I/O

Classes

Exercises

4: File I/O and Classes 4-12

Defining our own objects

So far, we have seen many objects in the course that come standard

with Python.

Integers

Strings

Lists

Dictionaries

etc

But often one wants to build (much) more complicated structures.

4: File I/O and Classes 4-13

Defining our own objects

So far, we have seen many objects in the course that come standard

with Python.

Integers

Strings

Lists

Dictionaries

etc

But often one wants to build (much) more complicated structures.

4: File I/O and Classes 4-14

Hangman example

Objects:

Game

Agents (different versions)

4: File I/O and Classes 4-15

Object Oriented Programming

Express computation in terms of objects, which are instances of classes

Class Blueprint (only one)

Object Instance (many)

Classes specify attributes (data) and methods to interact with the

attributes.

4: File I/O and Classes 4-16

Object Oriented Programming

Express computation in terms of objects, which are instances of classes

Class Blueprint (only one)

Object Instance (many)

Classes specify attributes (data) and methods to interact with the

attributes.

4: File I/O and Classes 4-17

Python’s way

In languages such as C++ and Java: data protection with private and

public attributes and methods.

Not in Python: only basics such as inheritance.

Don’t abuse power: works well in practice and leads to simple code.

4: File I/O and Classes 4-18

Simplest example

define class:
class Leaf:

pass

instantiate object
leaf = Leaf()

print leaf
<__main__.Leaf instance at 0x10049df80>

4: File I/O and Classes 4-19

Initializing an object

Define how a class is instantiated by defining the __init__ method.

Seasoned programmer: in Python only one constructor method.

4: File I/O and Classes 4-20

Initializing an object

The init or constructor method.

class Leaf:
def __init__(self, color):

self.color = color # private attribute

redleaf = Leaf(’red’)
blueleaf = Leaf(’blue’)

print redleaf.color
red

Note how we access object attributes.

4: File I/O and Classes 4-21

Self

The self parameter seems strange at first sight.

It refers to the the object (instance) itself.

Hence self.color = color sets the color of the object self.color

equal to the variable color.

4: File I/O and Classes 4-22

Another example

Classes have methods (similar to functions)

class Stock():
def __init__(self, name, symbol, prices=[]):

self.name = name
self.symbol = symbol
self.prices = prices

def high_price(self):
if len(self.prices) == 0:

return ’MISSING PRICES’
return max(self.prices)

apple = Stock(’Apple’, ’APPL’, [500.43, 570.60])
print apple.high_price()

Recall: list.append() or dict.items(). These are simply class methods!

4: File I/O and Classes 4-23

Another example

Classes have methods (similar to functions)

class Stock():
def __init__(self, name, symbol, prices=[]):

self.name = name
self.symbol = symbol
self.prices = prices

def high_price(self):
if len(self.prices) == 0:

return ’MISSING PRICES’
return max(self.prices)

apple = Stock(’Apple’, ’APPL’, [500.43, 570.60])
print apple.high_price()

Recall: list.append() or dict.items(). These are simply class methods!

4: File I/O and Classes 4-24

Class attributes

class Leaf:
n_leafs = 0 # class attribute: shared

def __init__(self, color):
self.color = color # object attribute
Leaf.n_leafs += 1

redleaf = Leaf(’red’)
blueleaf = Leaf(’blue’)

print redleaf.color
red
print Leaf.n_leafs
2

Class attributes are shared among all objects of that class.

4: File I/O and Classes 4-25

Class hierarchy through inheritance

It can be useful (especially in larger projects) to have a hierarchy of

classes.

Example

Animal
Bird

Hawk

Seagull

...

Pet

Dog

Cat

...

...

4: File I/O and Classes 4-26

Inheritance

Suppose we first define an abstract class

class Animal:
def __init__(self, n_legs, color):

self.n_legs = n_legs
self.color = color

def make_noise(self):
print ’noise’

4: File I/O and Classes 4-27

Inheritance

We can define sub classes and inherit from another class.

class Dog(Animal):
def __init__(self, color, name):

Animal.__init__(self, 4, color)
self.name = name

def make_noise(self):
print self.name + ’: ’ + ’woof’

bird = Animal(2, ’white’)
bird.make_noise()
noise
brutus = Dog(’black’, ’Brutus’)
brutus.make_noise()
Brutus: woof
shelly = Dog(’white’, ’Shelly’)
shelly.make_noise()
Shelly: woof

4: File I/O and Classes 4-28

Base methods

Some methods to override

__init__: Constructor

__repr__: Represent the object (machine)

__str__: Represent the object (human)

__cmp__: Compare

4: File I/O and Classes 4-29

Example

Implementing Rational numbers

class Rational:
pass

4: File I/O and Classes 4-30

Setup

What information should the class hold?

Numerator

Denominator

4: File I/O and Classes 4-31

Setup

What information should the class hold?

Numerator

Denominator

4: File I/O and Classes 4-32

Init

Implement the __init__ method

class Rational:
def __init__(self, p, q=1):

self.p = p
self.q = q

4: File I/O and Classes 4-33

Init

Implement the __init__ method

class Rational:
def __init__(self, p, q=1):

self.p = p
self.q = q

4: File I/O and Classes 4-34

Issues

Issues?

class Rational:
def __init__(self, p, q=1):

self.p = p
self.q = q

Ignore the division by 0 for now, more on that later.

4: File I/O and Classes 4-35

Issues

Issues?

class Rational:
def __init__(self, p, q=1):

self.p = p
self.q = q

Ignore the division by 0 for now, more on that later.

4: File I/O and Classes 4-36

Greatest common divisor

10
20 and 1

2 are the same rational.

Implement a gcd(a, b) function that computes the greatest common

divisor of a and b.

def gcd(a, b):
if b == 0:

return a
else:

return gcd(b, a%b)

Exercise: Verify Euclidean Algorithm

4: File I/O and Classes 4-37

Greatest common divisor

class Rational:
def __init__(self, p, q=1):

g = gcd(p, q)
self.p = p / g
self.q = q / g

Why is this awesome?

4: File I/O and Classes 4-38

Representing your class: Operator overloading

Implement __repr__ or __str__ early to print

Debugging

4: File I/O and Classes 4-39

Operator overloading: adding two Rationals

Add Rationals just like Ints and Doubles?

Rational(10,2) + Rational(4,3)

To use +, we implement the __add__ method

class Rational:
...
def __add__(self, other):

p = self.p * other.q + other.p * self.q
q = self.q * other.q
return Rational(p, q)

...

4: File I/O and Classes 4-40

Operator overloading: Comparing

__cmp__ compares objects

If self is smaller than other, return a negative value

If self and other are equal, return 0

If self is larger than other, return a positive value

4: File I/O and Classes 4-41

More on Operator Overloading

To learn more:

Google ‘Python operator overloading’.

4: File I/O and Classes 4-42

Contents

File I/O

Classes

Exercises

4: File I/O and Classes 4-43

Exercises

See course website for exercises for this week.

Get to know the person next to you and do them in pairs!

Let me know if you have any question

Class ends at 5:35pm.

4: File I/O and Classes 4-44

