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Tuples

Seemingly similar to lists

>>> myTuple = (1, 2, 3)
>>> myTuple[1]
2
>>> myTuple[1:3]
(2, 3)
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Tuples are immutable

Unlike lists, we cannot change elements.

>>> myTuple = ([1, 2], [2, 3])
>>> myTuple[0] = [3,4]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: ’tuple’ object does not
support item assignment
>>> myTuple[0][1] = 3
>>> myTuple
([1, 3], [2, 3])

3: Tuples, sets, dictionaries and strings 3-4



Packing and unpacking

t = 1, 2, 3
x, y, z = t

print t # (1, 2, 3)
print y # 2
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Functions with multiple return values

def simple_function():
return 0, 1, 2

print simple_function()
# (0, 1, 2)
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Dictionaries

A dictionary is a collection of key-value pairs.

An example: the keys are all words in the English language, and their

corresponding values are the meanings.

Lists + Dictionaries = $$$
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Defining a dictionary

>>> d = {}
>>> d[1] = "one"
>>> d[2] = "two"
>>> d
{1: ’one’, 2: ’two’}
>>> e = {1: ’one’, ’hello’: True}
>>> e
{1: ’one’, ’hello’: True}

Note how we can add more key-value pairs at any time. Also, only

condition on keys is that they are immutable.
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No duplicate keys

Old value gets overwritten instead!

>>> d = {1: ’one’, 2: ’two’}
>>> d[1] = ’three’
>>> d
{1: ’three’, 2: ’two’}
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Access

We can access values by keys, but not the other way around

>>> d = {1: ’one’, 2: ’two’}
>>> print d[1]

Furthermore, we can check whether a key is in the dictionary by

key in dict
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All keys, values or both

Use d.keys(), d.values() and d.items()

>>> d = {1: ’one’, 2: ’two’, 3: ’three’}
>>> d
{1: ’one’, 2: ’two’, 3: ’three’}
>>> d.keys()
[1, 2, 3]
>>> d.values()
[’one’, ’two’, ’three’]
>>> d.items()
[(1, ’one’), (2, ’two’), (3, ’three’)]

So how can you loop over dictionaries?
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Small exercise

Print all key-value pairs of a dictionary

>>> d = {1: ’one’, 2: ’two’, 3: ’three’}
>>> for key, value in d.items():
... print key, value
...
1 one
2 two
3 three

Instead of d.items(), you can use d.iteritems() as well. Better

performance for large dictionaries.
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Sets

Sets are an unordered collection of unique elements

>>> basket = [’apple’, ’orange’, ’apple’,
’pear’, ’orange’, ’banana’]

>>> fruit = set(basket) # create a set
>>> fruit
set([’orange’, ’pear’, ’apple’, ’banana’])
>>> ’orange’ in fruit # fast membership testing
True
>>> ’crabgrass’ in fruit
False

Implementation: like a dictionary only keys.
from: Python documentation
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Set comprehensions

>>> a = {x for x in ’abracadabra’ if x not in ’abc’}
>>> a
set([’r’, ’d’])

from: Python documentation
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Strings

Let’s quickly go over strings.

Strings hold a sequence of characters.

Strings are immutable

We can slice strings just like lists and tuples

Between quotes or triple quotes
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Everything can be turned into a string!

We can turn anything in Python into a string using str.

This includes dictionaries, lists, tuples, etc.
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String formatting

Special characters: \n, \t, \b, etc

Add variables: %s, %f, %e, %g, %d, or use format

fl = 0.23
wo = ’Hello’
inte = 12

print "s: {} \t f: {:0.1f} \n i: {}".format(wo, fl, inte)
# s: Hello f: 0.2
# i: 12

3: Tuples, sets, dictionaries and strings 3-22



Split

To split a string, for example, into seperate words, we can use split()

text = ’Hello, world!\n How are you?’
text.split()
# [’Hello,’, ’world!’, ’How’, ’are’, ’you?’]
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Split

What if we have a comma seperated file with numbers seperated by

commas?

numbers = ’1, 3, 2, 5’
numbers.split()
# [’1,’, ’3,’, ’2,’, ’5’]

numbers.split(’, ’)
# [’1’, ’3’, ’2’, ’5’]

[int(i) for i in numbers.split(’, ’)]
# [1, 3, 2, 5]

Use the optional argument in split() to use a custom seperator.

What to use for a tab seperated file?
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UPPER and lowercase

There are a bunch of useful string functions, such as .lower() and

.upper() that turn your string in lower- and uppercase.

Note: To quickly find all functions for a string, we can use dir

text = ’hello’

dir(text)
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join

Another handy function: join.

We can use join to create a string from a list.

words = [’hello’, ’world’]
’ ’.join(words)

’’.join(words)
# ’helloworld’

’ ’.join(words)
# ’hello world’

’, ’.join(words)
# ’hello, world’
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Importing a module

We can import a module by using import

E.g. import math

We can then access everything in math, for example the square root

function, by:

math.sqrt(2)
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Importing as

We can rename imported modules

E.g. import math as m

Now we can write m.sqrt(2)
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In case we only need some part of a module

We can import only what we need using the from ... import ...

syntax.

E.g. from math import sqrt

Now we can use sqrt(2) directly.
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Import all from module

To import all functions, we can use *:

E.g. from math import *

Again, we can use sqrt(2) directly.

Note that this is considered bad practice! It makes it hard to understand

where functions come from and what if several modules come with

functions with same name.
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Writing your own modules

It is perfectly fine to write and use your own modules. Simply import the

name of the file you want to use as module.

E.g.

def helloworld():
print ’hello, world!’

print ’this is my first module’

import firstmodule

firstmodule.helloworld()

What do you notice?
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Only running code when main file

By default, Python executes all code in a module when we import it.

However, we can make code run only when the file is the main file:

def helloworld():
print ’hello, world!’

if __name__ == "__main__":
print ’this only prints when run directly’

Try it!
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Exercises

See course website for exercises for this week.

Get to know the person next to you and do them in pairs!

Let me know if you have any question

Class ends at 5:35pm.
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