
CME 193 Introduction to Python Exercises

1 Basics

Exercise 1.1: The interpreter
Open the Python interpeter. What happens when you input the following statements:

(a) 3 + 1

(b) 3 * 3

(c) 2 ** 3

(d) "Hello, world!"

Exercise 1.2: Scripts
Now copy the above to a script, and save it as script1.py. What happens if you run the script? (try:
python script1.py). Can you fix this (hint: use the print function)

Exercise 1.3: More interpreter
Explain the output of the following statements if executed subsequently:

(a) ’py’ + ’thon’

(b) ’py’ * 3 + ’thon’

(c) ’py’ - ’py’

(d) ’3’ + 3

(e) 3 * ’3’

(f) a

(g) a = 3

(h) a

Exercise 1.4: Booleans
Explain the output of the following statements:

(a) 1 == 1

(b) 1 == True

(c) 0 == True

(d) 0 == False

(e) 3 == 1 * 3

(f) (3 == 1) * 3

(g) (3 == 3) * 4 + 3 == 1

(h) 3**5 >= 4**4

Exercise 1.5: Integers
Explain the output of the following statements:

(a) 5 / 3

(b) 5 % 3

(c) 5.0 / 3

(d) 5 / 3.0

(e) 5.2 % 3



CME 193 Introduction to Python Exercises

(f) 2001 ** 200

Exercise 1.6: Floats
Explain the output of the following statements:

(a) 2000.3 ** 200 (compare with above)

(b) 1.0 + 1.0 - 1.0

(c) 1.0 + 1.0e20 - 1.0e20

Exercise 1.7: Variables
Write a script where the variable name holds a string with your name. Then, assuming for now your
name is John Doe, have the script output: Hello, John Doe! (and obviously, do not use print "Hello,

John Doe!".

Exercise 1.8: Type casting
Very often, one wants to “cast” variables of a certain type into another type. Suppose we have variable
x = ’123’, but really we would like x to be an integer.

This is easy to do in Python, just use desiredtype(x), e.g. int(x) to obtain an integer.

Try the following and explain the output

(a) float(123)

(b) float(’123’)

(c) float(’123.23’)

(d) int(123.23)

(e) int(’123.23’)

(f) int(float(’123.23’))

(g) str(12)

(h) str(12.2)

(i) bool(’a’)

(j) bool(0)

(k) bool(0.1)

2 Control flow

Disclaimer: Some of the following problems are inspired by problems from www.projecteuler.net. Have a
look if you are interested, there are some great challenges and Python is an excellent tool for solving them.

Exercise 2.1: Range
Type range(5) in the interpreter, what does the interpreter return? So what does for i in range(5)

mean?

Let’s also find out whether the interpreter can help us understand the object ‘range(5)’ better. Type
type(range(5)) in the interpreter. More on this soon!

Exercise 2.2: For loops
Use a for loop to:

(a) Print the numbers 0 to 100

Page 2

www.projecteuler.net


CME 193 Introduction to Python Exercises

(b) Print the numbers 0 to 100 that are divisible by 7

(c) Print the numbers 1 to 100 that are divisible by 5 but not by 3

(d) Print for each of the numbers x = 2, . . . 20, all numbers that divide x, excluding 1 and x. Hence,
for 18, it should print 2 3 6 9.

Hint: see https://docs.python.org/2.7/library/functions.html#range.

Exercise 2.3: Simple while loops
Instead of using a for loop, use a while loop to:

(a) Print the numbers 0 to 100

(b) Print the numbers 0 to 100 that are divisible by 7

Exercise 2.4: Hangman update 1
Let’s reconsider the hangman code we saw in class.1 We noted that the computer agent is not very good
at guessing. Update the code such that the computer guesses ‘e’ first, and ’a’ second.

Use the simulate.py script to see if this improves performance.

Feel free to play around and see if you can do better!

Exercise 2.5: While loops
Use a while loop to find the first 20 numbers that are divisible by 5, 7 and 11, and print them Hint:
store the number found so far in a variable.

Pseudo-code:

number found = 0

x = 11

while number found is less than 20:

if x is divisible by 5, 7 and 11:

print x

increase number found by 1

increase x by 1

Exercise 2.6: More while loops
The smallest number that is divisible by 2, 3 and 4 is 12. Find the smallest number that is divisible by
all integers between 1 and 10.

Exercise 2.7: Collatz sequence
A Collatz sequence is formed as follows: We start with some number x0, and we find the next number
in the sequence by

xi+1 =

{
xi/2 if xi is even

3xi + 1 if xi is odd

If xi = 1, we stop iterating and have found the full sequence.

For example, if we start with x0 = 5, we obtain the sequence:

5 16 8 4 2 1

It is conjectured, though not proven, that every chain eventually ends at 1.

Print the Collatz sequence starting at x0 = 103.

1To obtain the Hangman code, either use $ git clone https://github.com/schmit/hangman.git (if you have git / use
Cloud9) or dowload the code directly: https://github.com/schmit/hangman/archive/master.zip

Page 3

https://docs.python.org/2.7/library/functions.html#range
https://github.com/schmit/hangman/archive/master.zip


CME 193 Introduction to Python Exercises

3 Functions

Exercise 3.1: Hello

(a) Write a function hello_world that prints ’Hello, world!’

(b) Write a function hello_name(name) that prints ’Hello, name!’ where name is a string.

(c) Explain the difference between the print and return keywords. What would change if instead of
print you would use return?

Exercise 3.2: Polynomial
Write a function that evaluates the polynomial 3x2 − x+ 2.

Exercise 3.3: Maximum
Write a function my_max(x,y) that returns the maximum of x and y. Do not use the max function, but
use if instead in following two ways:

(a) Use both if and else.

(b) Use if but not else (nor elif).

Exercise 3.4: Primes

(a) Write a function is_prime(n) that returns True only if n is prime.

(b) Note that apart from 2 and 3, all primes are of the form 6k ± 1 (though not all numbers of the
form 6k ± 1 are prime of course). Using this, we can improve the computation time by a factor 3.
Update your function to use this.

(c) Write a function that returns all primes up to n.

(d) Write a function that returns the first n primes.

Exercise 3.5: Root finding
Suppose f is a continuous function and f(a) < 0 and f(b) > 0 for some known a and b. For simplicity,
assume a < b. Then, there must exist some c such that f(c) = 0.

(a) Write a function root(f, a, b) that takes a function f and two floats a and b and returns the
root c. Hint: check the sign at the midpoint of the interval.

(b) Remove the assumption that a < b, and that f(a) < 0 and f(b) > 0, if your current code relies on
them.

(c) Add a check that prints
’function evals have same sign’

if f(a) > 0 and f(b) > 0 or if f(a) < 0 and f(b) < 0.

4 Lists

Exercise 4.1: Short questions

(a) Write a function that prints the elements of a list

(b) Write a function that prints the elements of a list in reverse

(c) Write your own implementation of the len function that returns the number of elements in a list.

Exercise 4.2: Copying lists

(a) Create a list a with some entries.

Page 4



CME 193 Introduction to Python Exercises

(b) Now set b = a

(c) Change b[1]

(d) What happened to a?

(e) Now set c = a[:]

(f) Change c[2]

(g) What happened to a?

Now create a function set_first_elem_to_zero(l) that takes a list, sets its first entry to zero, and
returns the list.

What happens to the original list?

Exercise 4.3: Lists of lists
What is the difference between a and b:

a = [[]] * 3

b = [[] for _ in xrange(3)]

Exercise 4.4: Lists and functions
Write a function that takes a list and an index, and sets the value of the list at the given index to 0.

Exercise 4.5: Primes
In Section 3 you wrote a function that prints all primes up to n, and a function that prints the first n
primes. Update these functions such that they return lists instead.

Exercise 4.6: List comprehensions
Let i, j = 1, . . . , n

(a) Generate a list with elements [i,j].

(b) Generate a list with elements [i,j] with i < j

(c) Generate a list with elements i + j with both i and j prime and i > j.

(d) Write a function that evaluates an arbitrary polynomial a0 + a1x + a2x
2 + . . . + anx

n using a list
comprehension, where you are given x and a list with coefficients coefs (hint: use enumerate)

Exercise 4.7: Filter
In lecture we have seen how to implement map using list comprehensions. Implement filter using list
comprehensions. Name your functions myfilter so you can compare with Python’s standard filter.

Exercise 4.8: Flatten a list of lists
Consider having a list with lists as elements, e.g. [[1,3], [3,6]].

Write a function that takes such a list, and returns a list with as elements the elements of the sublists,
e.g. [1, 3, 3, 6].

Exercise 4.9: Finding the longest word
Write a function that returns the longest word in a variable text that contains a sentence. While text

may contain punctuation, these should not be taken into account. What happens with ties?

As an example, consider: “Hello, how was the football match earlier today???”

Exercise 4.10: Collatz sequence, part 2
Recall the Collatz sequence problem from Section 1. Our goal is to find the number n < 1, 000, 000 that
leads to the longest Collatz sequence.

(a) Write a function that for any n, returns its Collatz sequence as a list

Page 5



CME 193 Introduction to Python Exercises

(b) Write a function that finds the integer x that leads to the longest Collatz sequence with x < n.

Exercise 4.11: Pivots
Write a function that takes a value x and a list ys, and returns a list that contains the value x and all
elements of ys such that all values y in ys that are smaller than x come first, then we element x and
then the rest of the values in ys

For example, the output of f(3, [6, 4, 1, 7]) should be [1, 3, 6, 4, 7]

Exercise 4.12: Prime challenge
Write the function primes(n) that return a list with all prime numbers up to n using three (or less)
lines of code.

Hint 1: Use lambda functions and list comprehensions.

Hint 2: Use the first two lines to define two helper (lambda) functions.

5 Tuples

Exercise 5.1: Swapping two values
Suppose you have two variables: a and b. Now you want to set a equal to the value of b and at the
same time set b equal to the value of a.

The following obviously does not work

a = b

b = a

so in some languages, you need to define a third variable like this

t = a

a = b

b = t

However, in Python you don’t need to do this. How can you swap a and b in one line?

Exercise 5.2: Zip
Suppose we have two lists, x and y that give the x and y coordinates of a set of points. Create a list
with the coordinates (x,y) as a tuple. Hint: Find out about the zip function.

You have decided that actually, you need the two seperate lists, but unfortunately, you have thrown
them away. How can we use zip to unzip the list of tuples to get two lists again?

Exercise 5.3: Distances
Suppose we have two vectors, x and y, stored as tuples with n elements. Implement functions that
compute the l1 and l2 distances between x and y. Note that n is not explicitly given.

6 Dictionaries

Exercise 6.1: Printing a dictionary
Write a function that prints key-value pairs of a dictionary.

Exercise 6.2: Histogram
Write a function that takes a list, and returns a dictionary with keys the elements of the list and as
value the number of occurances of that element in the list.

After you are done, look up ‘python collections counter’ in Google. Could you use a counter instead?

Page 6



CME 193 Introduction to Python Exercises

Exercise 6.3: Get method
Dictionaries have a get method, which takes a key and a default value. If the key is in the dictionary,
it returns the value, otherwise, it returns the default value.

Rewrite your code from the previous problem to make use of this get method.

Exercise 6.4: Random text generator
In this question we will start implementing a random text generator. The generated phrases somewhat
resemble English, but are usually nonsense. Next week, after we learn about file I/O, we are ready to
complete the code.

To generate sentences, we first construct a so-called Markov chain based on actual text data. This is a
very basic language model. We can then sample paths from this Markov chain to create new phrases.
This is actually easier than it sounds:

A Markov chain consists of states, and transition probabilities between states: i.e. when I am in state
A, what is the probability that I’ll go to state B?

We focus on the simple case where the state will be the current word. Consider the example sentence
‘the fire and the wind.’ Then, the states that we move through are

BEGIN→ the→ fire→ and→ the→ wind.→ END

where ‘BEGIN’ and ‘END’ are special states for the beginning and the end of the sentence. To find the
transition probabilities, we go over a large body of text and record current word and the next word. In
the above example, ‘BEGIN’ is followed by ‘the’, and ‘the’ is followed by ‘fire’ and ‘wind’.

We won’t be computing actual probabilities. Instead, we create a dictionary that, for every word,
contains all the words that follow it. To generate a phrase, we start at the ‘BEGIN’ state, and pick
randomly one word from the list of words that follows the ‘BEGIN’ state. Then we look up which words
follow that word, and again pick one word at random, until we hit the ‘END’ state, which signals that
we are done.

Before you get started, download the starter code by using
$ git clone https://github.com/schmit/Markov-chain-startercode.git (if you have git / use
Cloud9) or dowload the code directly:
https://github.com/schmit/Markov-chain-startercode/archive/master.zip

Then

• Implement the process line function, which takes a line as input, and returns a list with tuples
with the current state, and the next state.

• Implement the process textfile function, which loops over text, calls process line to extract
the transitions, and adds these to a dictionary. For now, do not worry about reading data from a
file, the lines are given as elements of the list f.

• Implement the generate line function, which generates random phrases based on a dictionary
with transitions.

See markov.py for a more detailed description of each function.

To run the code, use python markov.py <filename>. Since we are not using any files yet, replace
<filename> with a random word.

Exercise 6.5: Vector functions
Let’s implement some vector functions. There are two types of vectors, normal or dense vectors, which
we can represent using lists. For sparse vectors, where many of the elements are zero, this is inefficient.
Instead, we use a dictionary with keys the indices of non-zero values, and then the value corresponding
to the key is the value of the vector at that index. Hence, the vector [1, 2, 4] can be stored as a list: [1,
2, 4] or as a dictionary {0:1, 1: 2, 2: 4}.

Page 7

https://github.com/schmit/Markov-chain-startercode/archive/master.zip


CME 193 Introduction to Python Exercises

(a) Write a function that adds two (dense) vectors

(b) Write a function that multiplies (i.e. inner product) two (dense) vectors

(c) Write a function that adds two sparse vectors

(d) Write a function that multiplies two sparse vectors

(e) Write a function that adds a sparse vector and a dense vector

(f) Write a function that multiplies a sparse vector and a dense vector

Exercise 6.6: Reverse look-up
Dictionaries are made to look up values by keys. Suppose however, we want to find the key that is
associated with some value. Write a function that takes a dictionary and a value, and returns the key
associated with this value.

What challenges do you face? How would you deal with those challenges?

7 File I/O

Exercise 7.1: Open a file
Write a function that opens a file (input: filename), and prints the file line by line.

Exercise 7.2: Wordcount
On the course website you can find a text file containing the complete works of William Shapespeare.

(a) Find the 20 most common words

(b) How many unique words are used?

(c) How many words are used at least 5 times?

(d) Write the 200 most common words, and their counts, to a file.

Exercise 7.3: Random text generator II
In this exercise, we will finish the implementation of our random text generator from Question 6.4.

Change the process textfile function such that it reads a file line by line and processes it, instead of
using the hardcoded sample. This should require only a few changes to the code.

Generate some random sentences based on the books provided in the data/ folder.

As you will notice, most phrases are very random. To make the phrases seem a little more realistic, we
should use not just the last word, but the two last words. Going back to our previous example: ‘the fire
and the wind.’ we would have the (state, new word) pairs: (‘the fire’, ‘and’), (‘fire and’, ‘the’), (‘and
the’, ‘wind’) etc. Update your code to use states consisting of two words instead of one.

Bonus: Using more than 2 words is infeasible unless we have massive amounts of text data because the
number of states gets increasingly large. Change your code such that you can specify k, the number of
words per state.

Exercise 7.4: Sum of lists
Before you start coding, please read the entire problem.

(a) Data generation

Write a function that takes three integers, n, a and b and a filename and writes to the file a list
with n random integers between a and b.

Page 8



CME 193 Introduction to Python Exercises

(b) Reading the data

Write a function that can read the files as generated above and return the values.

(c) Sum problem

Write a function that given two filenames (pointing to files as generated by the above function) and
an integer k, finds all u and v such that u + v = k, and u is an element of the first list and v is a
member of the second list.

(d) Testing

Test your functions by generating 2 files with n = 2000, a = 1, b = 10000 and k = 5000 and
k = 12000.

(e) Bonus: Efficiency

If you are up to a challenge, write a function that solves the sum problem with the restriction that
you can only go over every number in the both lists once.

8 Classes

Exercise 8.1: Rational numbers
In this problem, we will write a class that can represent rational numbers, i.e. fractions p

q .

(a) Create a class Rational which is initialized by two integers, p and q, the nominator and denominator

(b) Add a method to print the rational number as p/q (the __str__ or __repr__ method is useful).

(c) We would like to represent 10
20 by 1

2 instead, hence write a function that computes the greatest
common divisor, and ensure that every rational number is simplified

(d) Add a method so that we can add two rational numbers with r1 + r2, here the __add__() method
is useful.

(e) Add a method to subtract two rational numbers. (__sub__)

(f) Add a method to multiply two rational numbers. (__mul__)

(g) Add a method to divide two rational numbers. (__div__)

(h) Add a method that compares whether two rational numbers are equal.

(i) Add a method to convert the rational number to a floating point (the __float__() method may
be handy).

(j) Add any more functionality that you think is useful but I failed to mention.

Exercise 8.2: Rock Paper Scissors
In this problem, we will finish an implementation for Rock-Paper-Scissors. We have written some code
to get you started, now it’s up to you to finish the implementation.

The code consists of 2 files: game.py and agent.py. The code that implements the actual game is coded
in game.py. agent.py defines several agents that can play the game. Download the starter code here
using
$ git clone https://github.com/schmit/Rock-paper-scissors-startercode.git (if you have git
/ use Cloud9) or dowload the code directly:
https://github.com/schmit/Rock-paper-scissors-startercode/archive/master.zip

Page 9

https://github.com/schmit/Rock-paper-scissors-startercode/archive/master.zip


CME 193 Introduction to Python Exercises

(a) Finish the implementation of game.py by implementing the compare function, updating the scores
(where a win is 1 point, and a tie or loss 0 points), and finally the summary function that gives
some information after the game.

(b) Implement the HumanAgent in agent.py, this agent should query the user for the next move, and
ensure that the user gives valid input.

(c) Implement MyAgent, where you can implement your own strategy, try to beat the InstructorAgent
consistently over 100 rounds.

Hint: have a look at the Hangman code.

Exercise 8.3: Hangman agent
Implement your own Hangman computer agent (see exercise 2.4) that is much more effective than the
Agent that guesses random characters.

Make sure you create a new class rather than overwriting the existing Agent class. You can of course
inherit from the Agent class

You can update the simulate.py script to test your implementation.

Exercise 8.4: Sparse and dense vectors
In exercise 6.5 you implemented functions for sparse and dense vector multiplications using lists and
dictionaries. However, this is a bit clumsy to use in practice. Really, we would like to represent sparse
and dense vectors as classes, this way we can overload operators such as + ( add ) and get sensible
output. For example, using + on two dense vectors implemented as lists would append the second vector
to the first, instead of adding the two together.

Implement sparse and dense vectors. Both classes should have the following capabilities:

(a) Print vector

(b) Add two vectors (both if other is dense and sparse)

(c) Multiply two vectors (both if other is dense and sparse)

Do re-use your code from the previous exercise.

Hint: isinstance() might be useful.

Exercise 8.5: Implementing the set class
Write a class mySet that has the same basic functionality as the Python set data structure. Base your
implementation on a dictionary.

Exercise 8.6: Binary search tree
In this exercise, we will implement a binary search tree. See http://en.wikipedia.org/wiki/Binary_

search_tree for an explanation.

(a) Define a class Node, and write the constructor, which takes one argument, value, and initializes
the left and right children to None.

(b) Write a function to print the tree.

(c) Write a function that inserts a new value in the tree at the right location.

(d) Write a function that looks up a value in the tree.

(e) Write a function that removes a value from the tree.

Exercise 8.7: Ordinary least squares
Our goal in this exercise is to write our own least-squares solver to solve regression problems:

arg min
β
‖y −Xβ‖2

Page 10

http://en.wikipedia.org/wiki/Binary_search_tree
http://en.wikipedia.org/wiki/Binary_search_tree


CME 193 Introduction to Python Exercises

See for example statsmodels ols or LinearRegression. While one can, and should, use written solvers,
it’s a good practice exercise.

(a) Setup an OLS class with fit and predict methods, to be coded later

(b) Write the fit method using numpy’s or scipy’s linear algebra module.

(c) Now write the predict function, that predicts yn given new Xn.

(d) Add a function that summarizes the model

(e) (Optional) Use Patsy and Pandas to support DataFrames and formulas, similar to R.

9 Numpy

Generate matrices A, with random Gaussian entries, B, a Toeplitz matrix, where A ∈ Rn×m and B ∈ Rm×m,
for n = 200, m = 500.

Exercise 9.1: Matrix operations
Calculate A+A, AA>, A>A and AB. Write a function that computes A(B − λI) for any λ.

Exercise 9.2: Solving a linear system
Generate a vector b with m entries and solve Bx = b.

Exercise 9.3: Norms
Compute the Frobenius norm of A: ‖A‖F and the infinity norm of B: ‖B‖∞. Also find the largest and
smallest singular values of B.

Exercise 9.4: Power iteration
Generate a matrix Z, n × n, with Gaussian entries, and use the power iteration to find the largest
eigenvalue and corresponding eigenvector of Z. How many iterations are needed till convergence?

Optional: use the time.clock() method to compare computation time when varying n.

Exercise 9.5: Singular values
Generate an n× n matrix, denoted by C, where each entry is 1 with probability p and 0 otherwise. Use
the linear algebra library of Scipy to compute the singular values of C. What can you say about the
relationship between n, p and the largest singular value?

Exercise 9.6: Nearest neighbor
Write a function that takes a value z and an array A and finds the element in A that is closest to z. The
function should return the closest value, not index.

Hint: Use the built-in functionality of Numpy rather than writing code to find this value manually. In
particular, use brackets and argmin.

10 Scipy

Exercise 10.1: Least squares
Generate matrix A ∈ Rm×n with m > n. Also generate some vector b ∈ Rm.

Now find x = arg minx ‖Ax− b‖2.

Print the norm of the residual.

Exercise 10.2: Optimization
Find the maximum of the function

f(x) = sin2(x− 2)e−x
2

Page 11



CME 193 Introduction to Python Exercises

0 1 2 3 4 5 6 7 8 9
index

1.5

1.0

0.5

0.0

0.5

1.0

1.5

v
a
lu

e

True coefficients
Estimated coefficients

Figure 1: Parameter plot

Exercise 10.3: Pairwise distances
Let X be a matrix with n rows and m columns. How can you compute the pairwise distances between
every two rows?

As an example application, consider n cities, and we are given their coordinates in two columns. Now
we want a nice table that tells us for each two cities, how far they are apart.

Again, make sure you make use of Scipy’s functionality instead of writing your own routine.

11 Matplotlib

Exercise 11.1: Plotting a function
Plot the function

f(x) = sin2(x− 2)e−x
2

over the interval [0, 2]. Add proper axis labels, a title, etc.

Exercise 11.2: Data
Create a data matrix X with 20 observations of 10 variables. Generate a vector b with parameters Then
generate the response vector y = Xb+z where z is a vector with standard normally distributed variables.

Now (by only using y and X), find an estimator for b, by solving

b̂ = arg min
b
‖Xb− y‖2

Plot the true parameters b and estimated parameters b̂. See Figure 1 for an example plot.

Exercise 11.3: Histogram and density estimation
Generate a vector z of 10000 observations from your favorite exotic distribution. Then make a plot that
shows a histogram of z (with 25 bins), along with an estimate for the density, using a Gaussian kernel
density estimator (see scipy.stats). See Figure 2 for an example plot.

12 Recursion

Exercise 12.1: Power
Write a recursive function that computes ab for given a and b, where b is an integer. Do not use **.

Page 12



CME 193 Introduction to Python Exercises

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

Figure 2: Histogram

Exercise 12.2: Recursive map and filter
Write a recursive functions myrecmap and myrecfilter that implement the map and filter functions
using recursion.

Exercise 12.3: Purify
Write two functions, one that uses iteration (say a for loop), and the other using recursion, that achieve
the following: The input of the function is a list with integers. The functions return a (new) list with
only the even integers in the list.

Exercise 12.4: Product
Write two functions, one that uses iteration, and the other using recursion, that achieve the following:
The input of the function is a list with numbers. The functions return the product of the numbers in
the list.

Exercise 12.5: Factorial
Write a recursive function to compute n! = n× (n− 1)× . . .× 1. Note that 0! is defined to equal 1.

Exercise 12.6: Recursive root finding
In Exercise 3.5 you wrote a function to find a root of a function f . Now write a recursive function that
finds the root of a function.

Exercise 12.7: Collatz sequence
Write a recursive implementation of a function that returns a list with the Collatz sequence started at
an arbitrary starting value.

Recall: A Collatz sequence is formed as follows: We start with some number x0, and we find the next
number in the sequence by

xi+1 =

{
xi/2 if xi is even

3xi + 1 if xi is odd

If xi = 1, we stop iterating and have found the full sequence.

Exercise 12.8: Fibonacci sequence
The Fibonacci sequence {Fi}i = 0∞ starts with F0 = 0, F1 = 1. Every subsequent value in the sequence
is the sum of the last elements in the sequence:

Fn = Fn−1 + Fn−2

(a) Implement a non-recursive function that computes the Fn

(b) Implement a recursive function that computes Fn

Page 13



CME 193 Introduction to Python Exercises

(c) Compare the runtime for computing F35 recursively versus non-recursively, and explain the differ-
ence.

(d) This does not mean a recursion is not feasible for this problem, only that the naive implementation
isn’t the best. We can get a better version using either of the following

(a) Store values already calculated, say in a dictionary, so you can look them up instead of redoing
the calculation.

(b) Generalizing the Fibonacci sequence to an additive sequence with arbitrary starting points t0
and t1, and finding a recursive algorithm to find the nth term in such a sequence. Note that
finding the nth term in a sequence started from t0 and t1 is the same as finding the n − 1th
term in a sequence started from t1 and t0 + t1.

Implement one of the above (or both).

Exercise 12.9: Palindromes
Given a string t, we are interested in finding the largest palindrome in t, where we are allowed to
remove characters from t. For example, consider the string abcdba, then the function should return
abcba. Before you start coding, figure out the recursion on paper first.

Extra: you will notice that if you are not careful, this will take a very long time to compute for longer
inputs. However, a simple modification can speed up your code so that it runs in O(n2), where n is the
length of the input string. Find and implement this modification.2

Exercise 12.10: Quicksort
There are many sorting algorithms, see for example http://www.sorting-algorithms.com/. Quicksort
is a well known (and quick) sorting algorithm that works as follows:

(a) Test whether the list is sorted, if not:

(b) Select one part of the list as pivot, any element works.

(c) Create a new list, left and right, and put all elements smaller than the pivot in the left list,
and all elements larger than the pivot in the right list.

(d) Recursively sort the left and right list, and return sorted left + pivot + sorted right.

Implement the quicksort algorithm. However, first think about the following caveats and how to get
around them:

(a) Testing whether a list is sorted takes quite a bit of work, so we do not want to do this. Instead, we
want to perform a much simpler check: what list is trivially sorted?

(b) What happens when the pivot element occurs multiple times in the list? How can we get around
this?

13 Iterators

Exercise 13.1: Collatz sequence
Write a generator that generates the Collatz sequence with initial value n. Use this to print out the
Collatz sequence started at 103

Recall the Collatz sequence problem from last week. A Collatz sequence is formed as follows: We start
with some number x0, and we find the next number in the sequence by

xi+1 =

{
xi/2 if xi is even

3xi + 1 if xi is odd

2This exercise is inspired by an exercise in cs221.

Page 14

http://www.sorting-algorithms.com/


CME 193 Introduction to Python Exercises

If xi = 1, we stop iterating and have found the full sequence.

Exercise 13.2: Collatz array using Numpy
Use the Collatz generator you wrote in the previous exercise to generate a vector with as ellements the
Collatz sequence started at 61.

Hint: use the np.fromiter function.

Exercise 13.3: Prime numbers
Write an iterator that iterates over the first n prime numbers. Use this to print out the first 10,000
primes.

14 Exception handling

Exercise 14.1: Rational numbers
Edit your code that implements the Rational class such that it raises an exception when the denominator
is 0.

Exercise 14.2: Wordcount
Recall the exercise of finding the 20 most common words in the Complete works of Shakespeare.

Write a script, reusing as much of your code as you can, such that you can specify the filename and k
for the k most common words at the command line and that the script will print the k most common
words, and their counts, from the file.

Make sure you handle errors gracefully, such as a misspecified filename.

15 Unit testing

Exercise 15.1: Factorial
Write unit tests for the factorial function.

Exercise 15.2: Prime numbers
Write a program primes.py that takes two command line arguments, a < b, and returns all prime
numbers between a and b (inclusive). Write a seperate test script primestest.py that contains unittests
for all functions in your script.

Exercise 15.3: Sorting
Write unit tests for a sorting algorithm. Test whether your implementation of quicksort passes the
tests.

16 More modules

Exercise 16.1: Regular expressions to find email addresses
At http://stanford.edu/~schmit/cme193/ex/data/emailchallenge.txt you find some text data
with some email addresses. Your task is to write a script that finds these email addresses (and ignores
the fake ones).

First, use the requests library to download the data directly into Python (so don’t save the file locally).
Then use re to match the email addresses. Make sure to extract the local part and domain part (before
and after @) separately.

Page 15

http://stanford.edu/~schmit/cme193/ex/data/emailchallenge.txt


CME 193 Introduction to Python Exercises

Hint: Although written for the Ruby regex, http://rubular.com/ can be very useful to play around
with your pattern. The Python regular expression should be identical or almost identical.

Exercise 16.2: Flask
Write a Flask app that displays the current date and time.

Hint: Use the datetime module to get the current time.

Page 16

http://rubular.com/

	Basics
	Control flow
	Functions
	Lists
	Tuples
	Dictionaries
	File I/O
	Classes
	Numpy
	Scipy
	Matplotlib
	Recursion
	Iterators
	Exception handling
	Unit testing
	More modules

