
 

 

 

  

Abstract— A single biological neuron is able to perform 

complex computations that are highly nonlinear in nature, 

adaptive, and superior to the perceptron model. A neuron is 

essentially a nonlinear dynamical system. Its state depends on 

the interactions among its previous states, its intrinsic 

properties, and the synaptic input it receives. These factors are 

included in Hodgkin-Huxley (HH) model, which describes the 

ionic mechanisms involved in the generation of an action 

potential. This paper proposes training of an artificial neural 

network to identify and model the physiological properties of a 

biological neuron, and mimic its input-output mapping. An HH 

simulator was implemented to generate the training data. The 

proposed model was able to mimic and predict the dynamic 

behavior of the HH simulator under novel stimulation 

conditions; hence, it can be used to extract the dynamics (in vivo 

or in vitro) of a neuron without any prior knowledge of its 

physiology. Such a model can in turn be used as a tool for 

controlling a neuron in order to study its dynamics for further 

analysis. 

I. INTRODUCTION 

n the past 50 years, much has been learned about the 

behavior of biological neurons. In particular, the model 

developed by Alan Hodgkin and Andrew Huxley [2] made it 

possible for the first time to understand how neurons spike. 

Ion channels with complex voltage-gated properties were 

brought together into a mathematical model that explained 

how action potentials are generated. This model is still the 

foundation for most models of biological neurons today, 

although it is computationally expensive to build and 

simulate. In particular, the model includes many properties 

that need to be set by making various assumptions about the 

physiology of a neuron.  

The question therefore arises; would it be possible to 

construct a black box that would capture the input-output 

relationship of a neuron without worrying about its 

physiological composition? If so, it would be possible to do 

online modeling that can provide the necessary tools for 

capturing the dynamical state of a biological neuron, 

 
Manish Saggar is with the Department of Computer Science at the 

University of Texas at Austin, Austin TX 78712 USA (e-mail: 

mishu@cs.utexas.edu). 

Tekin Meriçli is with the Department of Computer Science at the 

University of Texas at Austin, Austin TX 78712 USA (e-mail: 

tmericli@cs.utexas.edu). 

Sari Andoni is with the Institute of Neuroscience at the University of 

Texas at Austin, Austin TX 78712 USA (e-mail: andoni@mail.utexas.edu).  

Risto Miikkulainen is with the Department of Computer Science at the 

University of Texas at Austin, Austin TX 78712 USA (e-mail: 

risto@cs.utexas.edu). 

simulate its output for further analysis, and may provide a 

more powerful dynamic clamp and online control.  

ANNs have been successfully used for system 

identification in nonlinear domains [6, 7], as well as 

controllers for nonlinear dynamic plants [6]. In systems 

theory, multi-layer networks represent static nonlinear maps, 

while recurrent networks represent nonlinear dynamic 

feedback systems. Multi-layer networks have indeed proven 

useful in pattern recognition tasks [8-10], while recurrent 

networks have been used extensively in learning time 

sequences and modeling associative memories [11-14].  

Further, given unbounded number of hidden neurons, the 

feedforward ANNs can approximate the behavior of an 

arbitrary continuous or “otherwise reasonable” function 

within arbitrary accuracy ε on a compact domain (this result 

is called universal approximation theorem [20]). However, 

there is no such result for time series prediction. Moreover, 

to our knowledge, ANNs have not been used to model the 

temporal behavior of a single neuron, although it is a task for 

which they are well suited. 

The main objective of this paper is to find out whether it is 

possible to learn the nonlinear dynamics of a neuron, using 

ANNs with restricted number of building blocks, without any 

prior knowledge about its structural properties. The resulting 

model can be used as a tool for physiologists to perform 

more accurate experiments with biological neurons; such as 

determining how they will respond to given inputs, making it 

possible to design interactions that bring about the desired 

behaviors in the neuron. 

 Section II reviews the background on modeling biological 

neurons, including the Hodgkin-Huxley model, as well as the 

NARX and LRN architectures used in the experiments. 

Section III presents the experiments and the corresponding 

results. Finally, Section IV discusses future applications of 

the model.  

II. BACKGROUND 

This section gives a brief introduction to modeling the 

behavior of neurons, specifically the HH model. It also 

reviews prior work on identifying nonlinear dynamical 

systems with various ANN architectures. 

A. Modeling a biological neuron 

Conventional methods of modeling a biological neuron 

require knowledge of its spatial structure and biophysical 
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properties of its membrane. One common approach is to 

divide its structure into small connected compartments each 

having similar electrical properties.  

Compartmental modeling has been widely used in 

simulating neurons and is the basis of numerous modeling 

packages such as Neuron [18] and GENESIS [19].  Based on 

their levels of detail, various compartmental models have 

been proposed, the most common of which is the HH model 

[2].  

The HH model simulates the biophysical properties of a 

neuron, including the ionic mechanism involved in 

generating an action potential. The initial experiments by 

Hodgkin and Huxley were conducted using the giant axon of 

a squid to explain the ionic mechanisms underlying the 

initiation and propagation of action potential [2]. The model 

has since played a seminal role in biophysics and neuronal 

modeling. It describes the kinetics of sodium (Na
+
) and 

potassium (K
+
) channels involved in generating the action 

potential. The model can be described by the following four 

nonlinear ordinary differential equations: 

 

)()()( 43

KKNaNaLL EVngEVhmgEVg
t

V
Cm −−−−−−=

∂

∂

mVmV
t

m
mm )()1)(( βα

∂

∂
−−=  

hVhV
t

h
hh )()1)(( βα

∂

∂
−−=  

nVnV
t

n
nn )()1)(( βα

∂

∂
−−=

    

 

 

where n, m, h describe the gating particles involved in the 

activation of K
+
 channels and the activation and inactivation 

of Na
+
 channels, respectively. The functions α and β are 

voltage-dependent rate functions for each gating particle, Eion 

and gion are the equilibrium potential and conductance of 

each ion, respectively, L is the leak current, C is the 

capacitance of the membrane, and Ie is the input current 

injected through the recording electrode. 

It is important to note that the above equations describe a 

nonlinear dynamical system that can exhibit complex 

behavior including periodic and chaotic firing as well as a 

variety of different bifurcations depending on its parameters 

and the input (Ie) [17]. 

B. System identification using neural networks 

Two artificial neural network architectures are commonly 

used for system identification: the nonlinear autoregressive 

network with exogenous inputs (NARX) and the layer-

recurrent network (LRN). 

NARX [3, 4] is a dynamic network with feedback 

connections enclosing several layers of the network. The 

NARX model is based on the linear ARX model, which is 

commonly used in time-series modeling. The NARX model 

can be defined as: 

)),(),...,2(),1(),(),...,2(),1(()( uy ntututuntytytyfty −−−−−−=

where the next value of the output signal, y(t), is regressed 

on previous values of the output signal and previous values 

of the input signal, u(t) [3, 4]. Previous values of both input 

and output can be fed to the network using tapped-delay 

lines. 

NARX has been used in several tasks including one-step 

time series prediction [3, 4], nonlinear filtering, and 

nonlinear dynamic system control [6]. Figure 1(a) and Figure 

1(b) illustrate two possible configurations of a NARX 

network; series-parallel and parallel, respectively. In series-

parallel configuration the input and the output of the system 

are both fed to the network. In contrast in the parallel 

configuration, only the input of the system is connected to 

the network and the output of the network is fed back to 

itself. 

 
(a)

 
(b) 

Figure-1. Two versions of the NARX network architecture. 

(a) Series-parallel architecture. The actual output (y) of the 

system to be modeled is used as input, instead of feeding 

back the network’s estimates of the output (Y). (b) Parallel 

architecture. The output of the network (Y) is fed back, 

making the network a recurrent system. Such a network can 

predict the entire series; however, it is harder to train. 

 

 In series-parallel configuration the output of the system 

itself is available during training, which makes the input to 

the network more accurate. Also, the resulting network has 

feed-forward architecture; hence static back-propagation can 

be used for training. The disadvantage of the series-parallel 

configuration is that the network predicts only the next time 

step and needs to be transformed to a parallel configuration 

in order to predict the complete behavior of the system. 

Parallel configuration is usually preferred in system 

identification because once trained it can predict the 

behavior of the system for the entire period. However, the 



 

 

 

parallel configuration also has a disadvantage; it requires 

recurrent back-propagation, which is a computationally 

expensive operation. 

The second common system identification architecture is 

the Layer-Recurrent Network (LRN). The LRN is a 

simplified version of the Simple Recurrent Network (SRN) 

network [5]. It has a recurrent connection in each of its 

hidden neurons; an LRN with two hidden layers is illustrated 

in Figure 2. These recurrent connections store the values 

from the previous time step, which can be used to identify 

the input-output mapping for the future. An LRN commonly 

has one hidden layer with a feedback connection from the 

output of the hidden layer to its input. This recurrent 

connection allows LRNs to both detect and generate time-

varying patterns. The experiments in this paper are based on 

a two-hidden-layers architecture, which was found to be 

more effective in practice. Because the recurrent connections 

only store a copy of the activation, they do not need to be 

trained. Therefore, regular back-propagation can be used to 

train the LRN. 

 
Figure-2. An LRN with two hidden layers. Each hidden layer 

has a recurrent connection that acts as a memory to store 

pattern information. The network can therefore be trained 

efficiently with regular back-propagation. 

III. EXPERIMENTS 

A simulator was implemented based on the HH equations 

to test the hypothesis that ANNs can learn the behavior of a 

HH model. This simulator was used to generate training data 

for the neural network. Standard parameter values for HH 

equations used in our implementation are provided in 

Table1.  

The four dynamic properties that a HH simulator should 

depict in the output, given a current step, are described as 

follows. 

Threshold: The membrane potential is required to exceed 

a certain value to fire an action potential. This limiting value 

is called the threshold as shown in Figure 3.  

Periodic firing: Multiple spikes are fired by a neuron 

when its membrane potential is sustained at a voltage higher 

than the threshold for some duration. This phenomenon is 

called periodic firing, and is illustrated in Figure 4. 

 

Parameter Value 

EK -77 mV 

ENa +50 mV 

ELeak -57.4 mV 

gLeak 3 µS 

gK 360 µS 

gNa 1200 µS 

Cm 1 nanoFarad 

Area 0.1 mm2 

 

Table-1. Standard parameter values for the Hodgkin-Huxley 

Simulator. 

 

 
 

Figure-3. (a) HHS sub-threshold output given positive step 

current, followed by set of positive step currents ultimately 

triggering an action potential (b). (c) HHS output depicting 

sub-threshold response to a negative step current followed by 

an anode break action potential (d). 

 

 
Figure-4. HHS output depicting the refractory period and 

periodic firing due to sustained input current. 

 

Refractory period: A brief period of time, typically one 

millisecond, following the action potential during which the 

nerve does not respond to a second stimulus. The refractory 

period is illustrated in Figure 4. 

Anode break: An anode break action potential occurs at 

the trailing edge of a negative current step input. It is a result 



 

 

 

of the deactivation of the Na
+
 channels during the negative 

input and their sudden activation at the end of the stimulus. 

Figure 3 illustrates this phenomenon. 

The rest of this section explains implementation details for 

each of the three ANN architectures and the corresponding 

results. The parameter values for those architectures are 

provided in Table 2. 

First we tested the series-parallel NARX network. One of 

the inputs for the network was a current step, u(t), for a 232 

ms duration. The delay for this input was set to 4. The 

second input was the output from the HH model, v(t), for the 

same duration and delay. This network was trained 

separately on negative and positive current values. The 

output of the system after training is shown in Figure 5. 

 

Parameter Value 

NARX Layer Recurrent 

Series-

Parallel 

Parallel 

Input units 2 1 1 

Hidden layers 1 1 2 

Hidden 

neurons 

40 10 {10,20} 

Transfer 

function 

(hidden) 

tan-sigmoid tan-sigmoid {tan-sigmoid, tan-

sigmoid} 

Initial weights Random Random Random 

Output neurons 1 1 1 

Transfer 

function 

(output) 

Pure-linear Pure-linear Pure-linear 

Training 

algorithm 

Backprop Conjugate-

Gradient 

Conjugate-

Gradient 

Temporal delay 

input 

4 10 N/A 

Temporal delay 

output 

4 10 N/A 

 

Table-2. Parameter values for the series-parallel and parallel 

NARX networks and LRN networks. 

 

The series-parallel architecture was able to learn the 

properties of the HH membrane; i.e. the threshold, periodic 

firing, refractory period, and anode break for any given time 

step. This architecture has a great potential in control 

applications [3, 4]; hence, the trained network can be used to 

control the dynamical system (i.e. the HH model), and make 

it behave according to the user requirements. It can 

potentially be used as a tool for dynamic clamping. 

However, the series-parallel NARX network was not able 

to extend these predictions beyond the current time step. The 

reason was that while the output of the HH model was 

always presented as one of the inputs to the network during 

training, such information was not available during testing. 

Furthermore, this network did not generalize to novel 

stimuli.  

 

 
(a) 

 
(b) 

Figure-5. (a) Output of the series-parallel NARX network 

trained on positive step current. (b) Output of the series-

parallel NARX network trained on negative step current. 

 

The parallel version of NARX was tested in the second 

experiment. This network took as its input, a current step, 

u(t), for 232 ms, as well as its own output with a temporal 

delay. In other words, this network is recurrent, which made 

it more powerful than the series-parallel architecture. Its 

output was the voltage signal, v(t), for the same amount of 

time as the input. The temporal delays for both inputs were 

10, as shown in Table 2.  

The network was trained on various current steps ranging 

from -12 to 28 nA, consistent with the operational limits for a 

neuron. Like the series-parallel architecture, the parallel 

network learned the dynamic properties of HH simulator and 

was also unable to generalize to novel stimuli (i.e. the testing 

data). However, unlike the series-parallel architecture, it was 

able to predict the complete series for training data. Figure 

6(a) and Figure 6(b) show its output for positive and 

negative current steps, respectively. 

The LRN was tested in the third experiment. The 

recurrence in its hidden layers provides explicit memory 

storage and makes it one of most powerful architectures for 

time series prediction. In the experiments, this feature also 

found to help generalize the behavior into novel stimuli. 

The LRN was trained only on a single current step of +10 

nA for a duration of 232 ms. It was able to learn all four 

characteristics of HH simulator from only this single training 

instance. Figure 7(a) shows the output of the trained network 

when tested with the training data itself. For comparison, 

Figure 7(b) shows the output of another LRN, which was 

specifically trained on -12 nA current step for a duration of 

232 ms, and tested on the same data.  



 

 

 

 

 
(a)  

 

 
(b) 

Figure-6. (a) Output of the parallel NARX network trained 

on positive step current. (b) Output of the parallel NARX 

network trained on negative step current. 

  

Interestingly, the LRNs generalized very well to novel 

inputs. For example, when the network from Figure 7(a) 

trained on a positive input, was tested with the input of 

Figure 7(b), a negative one, it predicted the anode break and 

the action potential accurately. This behavior is illustrated in 

Figure 8. It can easily be seen that although the output of the 

network was not a perfect match with the actual output, the 

network was able to capture the overall properties of 

negative inputs, such as anode break and an action potential 

afterwards. This result shows how powerful recurrent 

networks can be in this task. 

Furthermore, when tested with a long-term prediction, this 

network again outperformed other network architectures. It 

was able to predict the output for an extra 800 time steps for 

a positive step signal, although it was trained once only for 

duration of 232 ms. This result is shown in Figure 9. All 

these tests show that the LRN learned the four characteristic 

properties of the HH model and was able to generalize 

successfully to previously unseen data.  

These properties make the LRNs suitable for the tasks of 

capturing the nonlinear dynamics of a neuron and interacting 

with the neurons to bring about the desired behaviors. 

IV. DISCUSSION & FUTURE WORK 

Although it has a microscopic structure, a single biological 

neuron can perform complex computations that are nonlinear 

and adaptive in nature. These characteristics make it superior 

to any simple artificial neuron model, at least in terms of 

complexity. In order to understand such complexity, HH 

models have been developed. However, such a model 

sometimes requires years of manual work to match the 

output of a biological neuron. This paper shows that it is 

possible to train an ANN to perform the input-output 

mapping of a biological membrane simulator from examples, 

providing a practical way to construct black-box models of 

biological neurons in future. 

 

 
(a) 

 
(b) 

Figure-7. (a) Output of the LRN trained on positive step 

current. (b) Output of the LRN trained on negative step 

current; the network was able to predict the anode break. 

 

 
Figure 8. Output of the LRN trained on positive step current, 

predicting previously unseen negative stimuli. 

 

 



 

 

 

The results obtained in the experiments indicate that it is 

possible to learn the basic characteristics of the HH model. 

Among the three architectures of time-series prediction, LRN 

stands out as the best, since it was not only able to learn the 

characteristics of HH equations, but was also able to 

generalize to novel stimuli. The power of LRN lies in the 

recurrent connections. The multiple recurrences provided 

enough memory storage so that the general characteristics of 

HH model can be learned based on a single example of the 

input-output mapping. 

 

 
Figure-9. Output of the LRN, trained on positive step 

current, predicting long term future values. 

 

 The most obvious direction of future work is to use this 

approach to model a biological neuron in vitro. It should be 

possible to account for the dynamical response of the neuron 

online without any prior knowledge of its spatial structure, or 

the ionic currents involved in generating its membrane 

potential.  

If successful, such a model can then be used to design 

sophisticated biological experiments. For instance, it should 

be possible to determine how to utilize a dynamic clamp [16] 

to introduce an artificial membrane or particular synaptic 

conductances into the biological neuron. The ANN model 

predicts the future output of the neuron, which means that 

complex patterns of input current can be calculated for use 

with the dynamic clamp to produce the desired neural 

behavior. In the future, it may even be possible to build 

hybrid circuits of artificial and biological neurons. Such a 

system would allow physiologists to control the neuron 

online without having to e.g. block particular ion channels. 

Such experiments would in turn contribute to developing a 

detailed understanding of how biological neurons operate 

and process information. 

V. CONCLUSION 

This paper shows that ANNs can learn to behave like the 

Hodgkin-Huxley model of a biological membrane. In the 

future it should be possible to apply this approach to 

modeling biological neurons in vitro. The main advantage of 

this approach is that it does not require any prior knowledge 

of the physiological properties of the neuron. After training 

is completed, the neural process is encoded within the 

weights of the ANN used to model the neuron. Several ANN 

architectures were tested in this task, with the recurrency in 

the LRN architecture proving to be the best. The results 

show that the Hodgkin-Huxley model can be perfectly 

learned by ANNs. Online modeling using ANNs can provide 

the necessary tools for capturing the dynamical state of a 

biological neuron, simulate its output for further analysis, 

and may provide a more powerful dynamic clamp and online 

control. Such mechanisms should prove valuable in 

understanding the behavior of biological neurons in the 

future. 
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