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Abstract

Nearly three decades ago, Bar-Noy, Motwani and Naor showed that no online edge-coloring
algorithm can edge color a graph optimally. Indeed, their work, titled “the greedy algorithm
is optimal for on-line edge coloring”, shows that the competitive ratio of 2 of the naïve greedy
algorithm is best possible online. However, their lower bound required bounded-degree graphs,
of maximum degree ∆ = O(log n), which prompted them to conjecture that better bounds
are possible for higher-degree graphs. While progress has been made towards resolving this
conjecture for restricted inputs and arrivals or for random arrival orders, an answer for fully
general adversarial arrivals remained elusive.

We resolve this thirty-year-old conjecture in the affirmative, presenting a (1.9 + o(1))-
competitive online edge coloring algorithm for general graphs of degree ∆ = ω(log n) under
vertex arrivals. At the core of our results, and of possible independent interest, is a new
online algorithm which rounds a fractional bipartite matching x online under vertex arrivals,
guaranteeing that each edge e is matched with probability (1/2 + c) · xe, for a constant
c > 0.027.

1 Introduction

An edge coloring of a graph is a decomposition of its edge-set into few vertex-disjoint edge-sets
(matchings), or colors. Edge coloring a graph of maximum degree ∆ trivially requires at least ∆
colors, and this is tight for bipartite graphs, by the century-old result of König [28]. For general
graphs, ∆ colors are not always sufficient (e.g., in odd-length cycles), yet ∆ + 1 colors are always
sufficient, by Vizing’s Theorem [35].

Algorithmically matching, or approximating, the optimal ∆(+1) colors needed to edge color
a graph has been the focus of much concentrated effort, for numerous computational models.
These include offline, online, distributed, parallel, and dynamic algorithms (see, e.g., [7, 8, 9, 11,
13, 25, 31, 34, 36] and references therein). These different models’ specific challenges naturally
impose limitations on the attainable approximations. For example, Holyer’s Theorem [20] rules
out efficient offline algorithms for computing an optimal edge coloring in general graphs, unless
P=NP.

For online algorithms, the challenge is in making immediate and irrevocable decisions con-
cerning edges’ colors after only part of the input is revealed. For example, the input graph can
either be revealed edge-by-edge (edge arrivals) or vertex-by-vertex (vertex arrivals), and an online
algorithm must assign colors to edges after they are revealed, immediately and irrevocably. The
measure of an online algorithm is its competitive ratio, which is the worst-case ratio of the number
of colors used by the algorithm to those of the optimal offline algorithm, namely, ∆ or ∆ + 1.

In both the edge-arrival and vertex-arrival settings, a simple greedy algorithm has competitive
ratio 2. The natural question, then, is whether a better online algorithm exists. Some thirty years
ago, Bar-Noy, Motwani and Naor [4] showed that this competitive ratio of 2 is best possible, and
no online algorithm (randomized or deterministic) can do better, in either arrival model.
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However, noting that their result only holds for bounded-degree n-node graphs, of maximum
degree ∆ = O(log n), Bar-Noy et al. conjectured that better algorithms exist for graphs of suffi-
ciently high maximum degree.

Conjecture 1.1 ([4]). There exists a (2− Ω(1))-competitive online edge coloring algorithm
under vertex arrivals in n-node graphs of maximum degree ∆ = ω(log n).

Bar-Noy et al. conjectured that the same holds under the more challenging edge-arrival model,
and that moreover a (1+o(1))-competitive algorithm exists. These conjectures remain out of reach,
though progress has been made on them over the years. For edge arrivals, a positive resolution of
the stronger conjecture was achieved under the assumption of random order arrivals, where the
input is generated adversarially, but its arrival order is randomly permuted by nature [1, 3, 5].
For adversarial vertex arrivals, Cohen et al. [9] showed that for bipartite graphs under one-sided
vertex arrivals (vertices of one side are given, and the other side’s vertices arrive), the conjectured
(1 + o(1))-competitive ratio is achievable for ∆ = ω(log n). Whether the competitive ratio of
2 of the greedy algorithm is optimal under general vertex arrivals, in general graphs, however,
remained open.

We answer the above open question, resolving Conjecture 1.1 in the affirmative.

Theorem 1.2. There exists an online edge coloring algorithm which is (1.897 + o(1))-
competitive w.h.p. on general n-node graphs with maximum degree ∆ = ω(log n) under vertex
arrivals.

Remark 1. For general ∆, the o(1) term in the above theorem is of the form γ
√

log n/∆, for
some constant γ > 0. This implies a better than two approximation ratio for sufficiently large
∆ = O(log n). For simplicity of exposition, we do not elaborate on this point.

1.1 Techniques

To obtain our results, we combine and extend several previous algorithmic ideas.
Our starting point is the following natural recursive approach, due to Karloff and Shmoys

[25], which reduces edge coloring a general graph G to edge coloring random bipartite subgraphs.
Their idea was to assign each vertex to either side of a random subgraph uniformly, resulting in
a bipartite subgraph H of G with maximum degree ∆/2 + o(∆) for ∆ = ω(log n), by standard
tail bounds. Consequently, applying an α-approximate algorithm to the random bipartite graph
and recursing on the remaining edges is easily shown to result in an edge coloring using α ·∆/2 +
o(∆) + α · ∆/4 + o(∆) · · · = α · ∆ + o(∆) colors. Importantly for us, this approach, originally
used in the context of NC algorithms by [25], is implementable online, by sampling the random
bipartitions in advance. (See Appendix A.)

At this point, one might be tempted to use the online algorithm of Cohen et al. [9] for these
random bipartite subgraphs. Unfortunately, the reduction of Karloff and Shmoys [25] applied
to online edge coloring with general vertex arrivals requires an online algorithm for bipartite
graphs with interleaved arrivals, and not one-sided arrivals, as handled by [9]. To instantiate the
Karloff-Shmoys approach, we therefore present a (2− c)-competitive edge coloring algorithm for
interleaved vertex arrivals in bipartite graphs, which, when combined with the approach of [25],
then extends to general graphs.

To obtain an edge-coloring algorithm for bipartite graphs under interleaved vertex arrival, we
extend the approach of Cohen et al. [9], who showed that an (α+ o(1))-competitive edge coloring
can be achieved by repeatedly applying a matching algorithm which matches each edge with
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probability (1/α)/∆. For each vertex of degree ∆(1 − o(1)), such a matching results in v being
matched with probability (1/α) · (1− o(1)). Repeating the above a super-logarithmic number of
times (making use of ∆ = ω(log n)) therefore decreases the maximum degree of the graph at a
rate of roughly one per α colors used. Cohen et al. used this approach with α = 1 + o(1), using
an online matching algorithm from [10], on bipartite graphs under one-sided arrivals. We observe
that this approach extends to arbitrary α and any arrival model, including interleaved vertex
arrivals in bipartite graphs. (See Appendix B.)

Motivated by the above discussion, we design an online matching algorithm for bipartite
graphs under interleaved arrivals, which matches each edge with probability (1/2 + c)/∆, for
some constant c > 0. More generally, and of possible independent interest, we design an online
rounding algorithm for bipartite fractional matchings under interleaved vertex arrivals, with a
multiplicative factor of 1/2 + c. That is, we show how, given a bipartite graph G and a fractional
matching x in G revealed vertex-by-vertex, one can output a randomized matching which matches
each edge e in G with probability (1/2 + c) ·xe. This extends a similar online rounding algorithm
previously developed by the authors with Papadimitriou and Pollner [33] in the context of online
stochastic optimization, but which only works under one-sided vertex arrivals, and is therefore
insufficient for our needs. This new rounding algorithm is the technical meat of this paper, and
is presented in Section 3.

Combining the above, we obtain Theorem 1.2, and the positive resolution of Conjecture 1.1.

1.2 Related Work

The first positive results for online edge coloring were under random order edge arrivals. In
this setting, Aggarwal et al. [1] showed that a (1 + o(1))-competitive ratio is achievable in dense
multigraphs with maximum degree ∆ = ω(n2). Bahmani et al. [3] then showed that the greedy
algorithm is sub-optimal for any graph of maximum degree ∆ = ω(log n). Achieving the best of
both these results, Bhattacharya et al. [5] recently obtained a (1 + o(1))-competitive algorithm
for graphs of maximum degree ∆ = ω(log n). As stated above, the only prior algorithm which
outperforms the greedy algorithm under adversarial arrivals is the algorithm of Cohen et al. [9]
for bipartite graphs under one-sided vertex arrivals. In this work, we remove the assumption of
bipartiteness and one-sided arrivals, and show how to outperform greedy in general graphs under
arbitrary vertex arrivals.

Our work also ties into the long line of work on online matching, initiated by Karp, Vaizrani and
Vazirani [26]. (See e.g., [2, 16, 18, 19, 21, 32] and references therein and [29] for a survey of earlier
work.) Historically, most research on online matching considered bipartite graphs with one-sided
arrivals, due to applications in Internet advertising [17, 30]. A recent line of work considers such
problems subject to interleaved vertex arrivals (motivated by more dynamic two-sided markets),
as well as vertex arrivals in general graphs [2, 19, 21, 22, 37]. Our rounding algorithm for bipartite
graphs with interleaved arrivals adds to the list of tools for tackling problems in this space.

Few of the works in the online (bipartite) matching literature rely on randomized rounding.
At first blush, this seems surprising, given the integrality of the bipartite fractional matching
polytope, and the multitude of competitive fractional algorithms for problems in this area [6, 17,
21, 22, 24, 37]. However, as pointed out in [12] and elaborated upon in [10], lossless rounding of
a fractional matching x is impossible in online settings. In particular, outputting a matchingM
which matches each edge e in a bipartite graph with probability Pr[e ∈M] = xe is impossible in
online settings, though it is easy to do offline. A natural question, then, is what is the highest
value of α < 1 for which one can guarantee Pr[e ∈M] ≥ α ·xe when rounding bipartite fractional
matchings online. The batched OCRS of Ezra et al. [15] gives α = 1/2, unfortunately too low for
our purposes. In prior work [33], motivated by a variation of the online Bayesian selection problem,
we improve this bound to α = 0.51, though only for one-sided arrivals, which is insufficient for our
needs here. In this work we generalize this result, achieving a slightly higher α = 0.527, subject
to interleaved vertex arrivals.
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2 Preliminaries

The underlying (a priori unknown) input to our problem is an n-node graph G = (V,E) of
maximum degree ∆ (with n and ∆ both known). The vertices of G are revealed over time. For
notational convenience, we associate the n := |V | vertices with the numbers in [n] by order of
appearance, and denote by u < v the fact that u arrives before v. When a vertex v arrives (at
time v), all its edges (u, v) to its previously-arrived neighbors u < v are revealed. After v arrives,
and before arrival of vertex v + 1, an online edge coloring algorithm must decide, irrevocably,
which color to assign to all edges (u, v) with u < v. The objective is to minimize the number of
distinct colors used.

As outlined in the introduction, we will rely on the ability to edge color general graphs by
recursively coloring random bipartite subgraphs, as first proposed by Karloff and Shmoys [25], in
the context of NC algorithms. The extension and proof for online settings is essentially the same,
and is provided, for completeness, in Appendix A.

Lemma 2.1. (Implied by [25]) Given an online edge coloring algorithm which is α-competitive
w.h.p. on bipartite graphs of maximum degree ∆ = ω(log n) under interleaved vertex arrivals, there
exists an online edge coloring algorithm which is (α+ o(1))-competitive w.h.p. on general graphs
of maximum degree ∆ = ω(log n) under vertex arrivals.

The following lemma, implied by the recent work of Cohen et al. [9], reduces α-competitive
edge coloring to online matching algorithms which match each edge with probability (1/α)/∆.
The proof is is provided, for completeness, in Appendix B.

Lemma 2.2. (Implied by [9]) Let A be an online matching algorithm which on any (bipartite)
graph of maximum degree ∆ ≤ ∆′ under vertex arrivals, matches each edge with probability at least
1/(α∆′). Then, there exists an online edge coloring algorithm A′ which is (α+ o(1))-competitive
w.h.p. for (bipartite) graphs of maximum degree ∆ = ω(log n) under vertex arrivals.

Motivated by Lemma 2.2, we show how to (approximately) round fractional matchings online.
These are assignments of nonnegative xe ≥ 0 to edges e ∈ E, satisfying the fractional matching
constraint,

∑
e3v xe ≤ 1 for all v ∈ V . This is a fractional relaxation of the matching constraint,

which stipulates that the degree of any vertex in a matching be at most one. Fittingly, we refer
to
∑

w<v xu,w as the fractional degree of u before arrival of v (or at its arrival time, if u = v). We
shall show how to round fractional matchings up to a multiplicative error of α < 2. This rounding
subroutine applied to the fractional matching assigning value 1/∆ to each edge of the graph thus
matches each edge with probability 1/(α∆). Combined with lemmas 2.1 and 2.2, this yields our
(α+ o(1))∆ coloring algorithm.

2.1 Negative Association

In our work we will need to bound positive correlations between variables. At the core of these
proofs will be a use of negatively associated random variables. This section introduces this notion
of negative dependence and its properties which we use.

Definition 2.3 ([23, 27]). Random variables X1, . . . , Xn are negatively associated (NA) if every
two monotone nondecreasing functions f and g defined on disjoint subsets of the variables in ~X
are negatively correlated. That is,

E[f · g] ≤ E[f ] · E[g]. (1)

The following simple example of NA variables will prove useful for us.

Proposition 2.4 (0-1 Principle [14]). Let X1, . . . , Xn ∈ {0, 1} be binary random variables satis-
fying

∑
iXi ≤ 1 always. Then, the variables X1, . . . , Xn are NA.
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Negative association is closed under several operations, allowing to construct more elaborate
NA distributions from simpler NA distributions as above (see [14, 23, 27]).

Proposition 2.5 (Independent Union). Let X1, . . . , Xn be NA and Y1, . . . , Ym be NA, with {Xi}i
independent of {Yj}j. Then, the variables X1, . . . , Xn, Y1, . . . , Ym are all NA.

Proposition 2.6 (Function Composition). Let X1, . . . , Xn be NA variables, and let f1, . . . , fk
be monotone nondecreasing functions defined on disjoint subsets of the variables in ~X. Then the
variables f1( ~X), . . . , fk( ~X) are NA.

An immediate corollary of negative association, obtained by considering the functions f( ~X) =
Xi and g( ~X) = Xj for i 6= j, is pairwise negative correlation.

Proposition 2.7 (NA implies Negative Correlation). Let X1, . . . , Xn be NA variables. Then, for
all i 6= j, we have that Cov(Xi, Xj) ≤ 0.

3 Rounding Bipartite Fractional Matchings Online

In this section we present an online algorithm which (approximately) rounds a bipartite fractional
matching under interleaved vertex arrivals. In what follows, we let c ≥ 0.027 be the largest value
below 0.03 satisfying

(1/2− c)(1− 4c)(1/2− c− 6c/(1/2− c))− 2c ≥ 0. (2)

We note that this choice of c ≤ 0.03 also satisfies the following.1

min{1/2− c, 1− 4c, 1− 6c/(1/2− c)2} ≥ 0. (3)

We show the following.

Theorem 3.1. There exists an online algorithm which, given an (unknown) bipartite graph
G under interleaved vertex arrivals, together with a fractional matching x in G, outputs a
random matchingM matching each edge e ∈ E with probability

Pr[e ∈M] = (1/2 + c) · xe ≥ 0.527 · xe. (4)

We now turn to describing the algorithm claimed by the above theorem.

3.1 Intuition and Algorithm

Before presenting our algorithm, we describe the approach used to obtain Theorem 3.1 under
one-sided arrivals [33], and then discuss the new ideas needed to extend this result to interleaved
arrivals.

Naturally, an edge (u, v) with u < v (i.e., v arriving later than u) can only be matched if u is
not already matched before the arrival of v. We denote by Fu,v the event that u is free (i.e., is
not matched inM) prior to the arrival of v. The guarantee of Theorem 3.1 implies the following
closed form for the probability of this event.

Pr[Fu,v] = g(u, v) := 1−
∑
w<v

(1/2 + c) · xu,w. (5)

1We encourage the reader to think of c → 0, and note that inequalities (2) and (3) hold for sufficiently small
constant c > 0. Our choice of c ≈ 0.027 is simply the largest satisfying all these constraints.
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To achieve marginal probabilities of Pr[(u, v) ∈ M] = (1/2 + c) · xu,v, our first step is to
have every arriving vertex v pick a random neighbor u < v with probability xu,v, and then,
if u is free, we match (u, v) with probability qu,v := min(1, (1/2 + c)/g(u, v)). For neighbors
u of low fractional degree upon arrival of v, i.e.,

∑
w<v xu,w ≤

1/2−c
1/2+c , this last probability is

precisely qu,v = (1/2+c)/Pr[Fu,v]. Consequently, we match each such edge (u, v) with probability
Pr[(u, v) ∈M] = xu,v · Pr[Fu,v] · (1/2 + c)/Pr[Fu,v] = (1/2 + c) · xu,v, as desired. For edges (u, v)
for which u has high fractional degree, on the other hand, this only gives us Pr[(u, v) ∈ M] ≥
(1/2− c) · xu,v, and this can be tight.

To increase the probability of an edge (u, v) to be matched to the desired (1/2 + c) · xu,v, we
repeat this process a second time, making a second pick, if v is not matched after its first pick.
Here, we must argue that the variables {Fu,v | u < v} do not have strong positive correlation.
Indeed, if, as an extreme case, we had Fu,v = Fw,v always for all u,w < v, and v had only
high-degree neighbors (for which qu,v = 1), then if v is not matched to its first pick, then all its
neighbors must be matched, and v is therefore never matched as a second pick. This implies that
a second pick does not increase Pr[(u, v) ∈ M] in this case. As shown in [33], under one-sided
arrivals, this problematic scenario does not occur, since the matched status of neighbors of v is
rather weak. For interleaved arrivals, however, the underlying argument does not carry through,
as we now explain.

3.1.1 Extension to Interleaved Arrivals

The key difference between one-sided and interleaved arrivals is that now we require small positive
correlation between the matched statuses of every two nodes on the same side of the bipartition,
rather than just nodes on the “offline side”. For one-sided arrivals, the weak positive correlation
between offline vertices was due to two factors. (1) low-degree offline vertices are matched only
due to semi-adaptive matching choices, where precisely one neighbor of an arriving online vertex
is picked, and at most one is matched. (That is, they are only matched as a first pick.) Therefore,
by the 0-1 Principle (Proposition 2.4) and closure properties of NA distributions (propositions 2.5
and 2.6), the indicators for a vertex to be matched when it has low fractional degree are NA, and
hence are negatively correlated. (2) On the other hand, the probability of a node to be matched
when it has high degree is low, since each edge is matched with probability (1/2 + c) · xu,v, and
the residual fractional degree when v has high degree is 1− 1/2−c

1/2+c = 2c
1/2+c ≤ 4c. Putting (1) and

(2) together, we find that the matched statuses of any two offline vertices have small correlation.
Unfortunately, under interleaved arrivals, the above is no longer true. In particular, if a vertex

v has low fractional degree upon arrival, it may still be matched as a second pick upon arrival
(due to its high-degree neighbors). Consequently, the indicators for vertices on the same side
of the bipartition being matched when they have low fractional degree are no longer negatively
associated, thus undoing the entire argument used to bound Cov(Fu,v, Fw,v) for vertices u,w < v
on the same side of the bipartition.

To overcome this problem, we have each arriving vertex v with low fractional degree upon
arrival only pick once, and rely on its low fractional degree to pick each neighbor with higher
probability. In particular, when such a vertex v arrives, we pick at most one neighbor with
probability xu,v · 1/2+c1/2−c . (Since v has low fractional degree on arrival,

∑
u<v xu,v ≤

1/2−c
1/2+c , this is

well-defined.) Then, if this picked vertex u is free, we match (u, v) with probability 1/2−c
Pr[Fu,v ]

=
1/2−c
g(u,v) (≤ 1), resulting in the edge (u, v) being matched with probability xu,v · (1/2 + c). Crucially
for our analysis, this now allows us to show that the indicators for vertices (in the same side of
the graph) to be matched when they have low fractional degree is again negatively associated.
This then results in the matched status of vertices again being decomposable into two variables,
with the first being negatively correlated, and the second having low probability, from which we
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obtain that vertices on the same side of the bipartition have low correlation.2

This discussion gives rise to Algorithm 1, which we prove in this section provides the guarantees
of Theorem 3.1.

Algorithm 1

1: Init: M← ∅
2: for all vertices v, on arrival do
3: read {xu,v | u < v}
4: if

∑
u<v xu,v ≤

1/2−c
1/2+c then

5: pick at most one u < v with probability xu,v · 1/2+c1/2−c
6: if u 6= nil and u is unmatched inM then
7: with probability 1/2−c

g(u,v) do
8: M←M∪ {(u, v)}
9: else

10: pick at most one u < v with probability xu,v
11: if u 6= nil and u is unmatched inM then
12: with probability min

(
1, 1/2+cg(u,v)

)
do

13: M←M∪ {(u, v)}
14: if v is still unmatched inM then
15: pick at most one u < v with probability xu,v
16: if u 6= nil and u is unmatched inM then
17: with probability pu,v guaranteeing Pr[(u, v) ∈M] = (1/2 + c) · xu,v do
18: M←M∪ {(u, v)}
19: OutputM

3.2 High-Level Analysis

For our analysis and proof of Theorem 3.1, we will assume, by way of an inductive proof, that
Equation (4) holds for all edges (u,w) with u,w < v and therefore that for each u < v we have
Pr[Fu,v] = g(u, v), as stated in Equation (5).

Given the inductive hypothesis, it is easy to verify that Algorithm 1 guarantees marginal
probabilities of each edge to be matched to be precisely (1/2+c)·xe. Indeed, for an arriving vertex
v with low fractional degree,

∑
u<v xu,v ≤

1/2−c
1/2+c (lines 4-8), since by the inductive hypothesis u

is free at time v with probability Pr[Fu,v] = g(u, v), we have that

Pr[(u, v) ∈M] = xu,v ·
1/2 + c

1/2− c
· g(u, v) · 1/2− c

g(u, v)
= (1/2 + c) · xu,v.

In the alternative case of lines 9-18, we trivially have that each edge (u, v) with u < v is matched
with probability precisely Pr[(u, v) ∈ M] = (1/2 + c) · xe, due to lines 17-18. The crux of the
analysis, then, is in proving that this algorithm is well-defined, and in particular that there exists
some probabilities pu,v as stated in Line 17.

We note that all probabilistic lines in the algorithm except for Line 17 are trivially well-
defined. First, if v has low fractional degree before time v, i.e.,

∑
u<v xu,v ≤

1/2−c
1/2+c , then the

probability of any neighbor to be picked in Line 5 is at most
∑

u<v xu,v ·
1/2+c
1/2−c ≤ 1, and so this

2We note that Gamlath et al. [19] followed a superficially similar rounding approach, using two choices. As they
only required bounds on the (unweighted) matching’s size, their analysis relied on showing that globally positive
correlation is low. As we desire high matching probability on an edge-by-edge (or at least vertex-by-vertex) basis,
we must follow a more delicate approach.
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line is well-defined. Next, by the fractional matching constraint, we have that
∑

u<v xu,v ≤ 1, and
consequently lines 10 and 15 are well-defined. Finally, by the fractional matching constraint, we
have that

∑
w<v(1/2 + c) · xu,w ≤ 1/2 + c, and therefore

Pr[Fu,v] = g(u, v) ≥ 1/2− c. (6)

Consequently, the term 1/2−c
g(u,v) in Line 7 is indeed a probability, by our choice of c = 0.027 ≤ 1/2.

We now turn to proving that probabilities pu,v as stated in Line 17 do indeed exist.
First, to show that pu,v ≥ 0, we must show that the probability of edge (u, v) to be matched

as a first pick in Line 13 does not on its own exceed (1/2 + c) · xu,v.

Observation 3.2. The probability of an edge (u, v) to be matched in Line 13 is at most

Pr[(u, v) added toM in Line 13] ≤ (1/2 + c) · xu,v.

Proof. By the inductive hypothesis, we have that Pr[Fu,v] = g(u, v). Consequently,

Pr[(u, v) added toM in Line 13] = xu,v ·min

(
1,

1/2 + c

g(u, v)

)
· g(u, v) ≤ (1/2 + c) · xu,v.

Corollary 3.3. The parameter pu,v in Line 17 satisfies pu,v ≥ 0.

The core of the analysis will then be in proving that pu,v ≤ 1. For this, we will need to argue
that a second pick in lines 14-18 is likely to result in (u, v) being matched, provided we set pu,v ≤ 1
high enough. We prove as much in the next section.

3.3 Core of the Analysis

In this section we prove that the second pick is likely to result in a match. To this end, we prove
that the matched statuses of neighbors of an arriving vertex v have low positive correlation (if
any). More formally, if G = (V1, V2, E) is our bipartite graph, we will prove the following.

Lemma 3.4. For any i = 1, 2, vertex v and vertices u,w < v with u,w ∈ Vi,

Cov(Fu,v, Fw,v) ≤ 6c.

Since the covariance of two binary variables A and B is equal to that of their complements,
Cov(A,B) = Cov(1−A, 1−B), we will concern ourselves with bounding Cov(Mu,v,Mw,v), where
Mu,v := 1− Fu,v is an indicator for u being matched inM before v arrives.

For this proof, we write Mu,v as the sum of two Bernoulli variables, Mu,v = ML
u,v +MH

u,v. The
indicators ML

u,v and MH
u,v correspond to u being matched to some neighbor w at a time z when u

had low or high fractional degree, respectively. That is,

ML
u,v := I

(u,w) ∈M for some w < v with
∑

z<min{u,w}

xu,z ≤
1/2− c
1/2 + c

 ,
with MH

u,v = Mu,v −ML
u,v defined analogously.

In what follows, we will show that for any vertex v and index i = 1, 2, the variables {ML
u,v |

u ∈ Vi} are negatively correlated, while the variables {MH
u,v | u ∈ Vi} have low probability, which

implies that they have low positive correlation with any other binary variable. These bounds will
allow us to bound the correlation of the sums Mu,v = ML

u,v +MH
u,v.

We start by proving the negative correlation between ML
u,v variables, and indeed proving

negative association of these variables.

Lemma 3.5. For any i = 1, 2 and vertex v, the variables {ML
u,v | u < v, u ∈ Vi} are NA.
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By Proposition 2.7, this implies that the above variables are negatively correlated.

Corollary 3.6. For any i = 1, 2, vertex v and earlier vertices u,w < v with u,w ∈ Vi,

Cov(ML
u,v,M

L
w,v) ≤ 0.

Proof of Lemma 3.5. Recall that ML
u,v is an indicator for u being matched before arrival of v

before it has high fractional degree. By definition of Algorithm 1, this implies that a matching
event accounted for by ML

u,v can only occur in lines 8 or 13. Such matches occur due to u picking
a neighbor or being picked as a neighbor in line 5 or 10, and the probabilistic test in line 7 or
12 (respectively), passing, if the picked vertex was previously unmatched inM. We imagine we
perform the probabilistic tests in lines 7 and 12 before testing whether the picked vertex was
unmatched inM.

For vertices w < z, let Aw,z be an indicator for z picking w in line 5 or 10, and the probabilistic
test in line 7 or 12 (respectively) passing. Then, by the 0-1 Principle (Proposition 2.4), we have
that for any vertex z, the variables {Aw,z | w < z} are NA. Moreover, the families of variables
{Aw,z | w < z} for distinct z are NA. Therefore, by closure of NA under independent union
(Proposition 2.5), the variables {Aw,z | z, w < z} are NA. For notational simplicity, letting
Az,w := Aw,z for z > w (recall that we only defined Aw,z for w < z), we find that if z′ is the
smaller of v − 1 and the first time z that u has high fractional degree, the variables ML

u,v are
precisely equal to

ML
u,v :=

∨
w≤z′

Aw,u.

Indeed, this is due to u being matched while it has low fractional degree upon the first time that it
is picked by a neighbor (or it picks a neighbor) in line 5 or 10, and the corresponding probabilistic
test in line 7 or 12 passes. Therefore, by closure of NA under monotone function composition
(Proposition 2.6), the variables {ML

u,v | u ∈ Vi}, which are monotone nondecreasing functions of
disjoint subsets of the variables Aw,u by bipartiteness, are NA.3

We now turn to upper bounding the probability of the event MH
u,v.

Lemma 3.7. For any edge (u, v) with u < v, we have that Pr[MH
u,v] ≤ 2c.

Proof. Recall that by the inductive hypothesis, Pr[(u,w) ∈ M] = (1/2 + c) · xu,w. On the
other hand, by the fractional matching constraint, we have that

∑
w<v xu,v ≤ 1, and therefore

Pr[Mu,v] ≤ 1/2 + c. On the other hand, if we denote by zu the first time u has high fractional
degree, then either zu ≥ v, in which case Pr[MH

u,v] = 0, or

Pr[ML
u,v] ≥

∑
w<zu

xu,w · (1/2 + c) ≥ 1/2− c
1/2 + c

· (1/2 + c) = 1/2− c,

in which case we have

Pr[MH
u,v] = Pr[Mu,v]− Pr[ML

u,v] ≤ 2c.

We are now ready to prove Lemma 3.4, whereby vertices u,w on the same side of the bipartition
have weakly correlated matched statuses, namely Cov(Fu,v, Fw,v) ≤ 6c.

Proof. By definition of covariance, the binary variables Fu,v and Fw,v satisfy Cov(Fu,v, Fw,v) =
Cov(1 − Fu,v, 1 − Fw,v) = Cov(Mu,v,Mw,v) (see Proposition B.3). We therefore turn to upper
bounding the covariance of the variables Mu,v and Mw,v.

3This is the only place in our analysis where we use bipartiteness.
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By the additive law of covariance, the covariance of the variables Mu,v = ML
u,v + MH

u,v and
Mw,v = ML

w,v +MH
w,v, denoted by (?) = Cov(Mu,v,Mw,v), satisfies

(?) = Cov(ML
u,v +MH

u,v , M
L
w,v +MH

w,v)

= Cov(ML
u,v,M

L
w,v) + Cov(ML

u,v,M
H
w,v) + Cov(MH

u,v,M
L
w,v) + Cov(MH

u,v,M
H
w,v)

≤ 0 + Pr[ML
u,v,M

H
w,v] + Pr[MH

u,v,M
L
w,v] + Pr[MH

u,v,M
H
w,v]

≤ 0 + Pr[MH
w,v] + Pr[MH

u,v] + Pr[MH
u,v]

≤ 6c.

Here, the first inequality follows from Corollary 3.6, the second inequality follows from the trivial
bound on covariance of Bernoulli variables A and B given by Cov(A,B) = Pr[A,B] − Pr[A] ·
Pr[B] ≤ Pr[A,B] ≤ Pr[A], and the final inequality follows from Lemma 3.7.

Lemma 3.4 now allows us to argue that if u has high degree upon arrival of v, then Fu,v is
nearly independent of the event Rv, whereby v is rejected (not matched) after its first pick of u1
(possibly u1 = nil). In particular, we have the following.

Lemma 3.8. Let u < v be a vertex of high fractional degree,
∑

w<v xu,w, upon arrival of v. Then,
for all w 6= u (including possibly w = nil), we have

Pr[Fu,v, Rv, u1 = w] ≥ Pr[Fu,v] · Pr[Rv, u1 = w] ·
(

1− 6c

(1/2− c)2

)
.

Proof. For w = nil the claim follows from the event u1 = nil implying Rv, and being independent
of Fu,v.

Pr[Fu,v, Rv, u1 = nil] = Pr[Fu,v] · Pr[Rv, u1 = nil].

Next, let w < v be some neighbor of v. If we denote by qw,v := min
(

1, 1/2+cg(w,v)

)
the probability

that w does not reject v if it is picked first and is free, then the probability that u1 = w and v
gets rejected in its first pick is

Pr[Rv, u1 = w] = xw,v · (1− qw,v · Pr[Fw,v]) ≥ xw,v · (1/2− c), (7)

where the inequality follows from Pr[Fw,v] = g(w, v) by Equation (6), which implies that qw,v ·
Pr[Fw,v] ≤ 1/2 + c. Similarly, the probability u is free, u1 = w and v gets rejected in its first pick
is

Pr[Fu,v, Rv, u1 = w] = xw,v · (Pr[Fu,v]− qw,v · Pr[Fw,v, Fu,v])

≥ xw,v · (Pr[Fu,v]− qw,v · (Pr[Fw,v] · Pr[Fu,v] + 6c)) ,

≥ xw,v · (Pr[Fu,v]− qw,v · (Pr[Fw,v] · Pr[Fu,v])− 6c)

≥ xw,v · Pr[Fu,v] ·
(

1− qwv · Pr[Fw,v]−
6c

1/2− c

)
≥ Pr[Fu,v] · Pr[Rv, u1 = w] ·

(
1− 6c

(1/2− c)2

)
,

where the first inequality follows from Lemma 3.4, the second inequality follows from the trivial
bound qwv ≤ 1, the third inequality follows from Pr[Fu,v] = g(u, v) ≥ 1/2 − c by Equation (5),
and the final inequality follows from Equation (7).

In what follows we denote by xnil,v := 1 −
∑

w<v xw,v the probability with which u1 = nil.
From Lemma 3.8 and Equation (7), as well as Pr[Rv, u1 = nil] = Pr[u1 = nil] = xnil,v, we obtain
the following lower bound on Pr[Fu,v, Rv, u1 = w] in terms of xw,v.
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Corollary 3.9. For any vertex v and w (possibly w = nil), we have that

Pr[Fu,v, Rv, u1 = w] ≥ Pr[Fu,v] · xw,v ·
(

1/2− c− 6c

1/2− c

)
.

Finally, we are ready to prove that pu,v is a probability, and in particular pu,v ≤ 1.

Lemma 3.10. The parameter pu,v in Line 17 satisfies pu,v ∈ [0, 1].

Proof. Non-negativity of pu,v was proven in Corollary 3.3. We turn to proving that pu,v ≤ 1
suffices to guarantee Pr[(u, v) ∈ M] ≥ (1/2 + c) · xu,v, from which we obtain that there exists
some pu,v ∈ [0, 1] which results in Pr[(u, v) ∈M] = (1/2 + c) · xu,v.

By Equation (6) we have that Pr[Fu,v] = g(u, v) ≥ 1/2− c, and therefore

Pr[(u, v) ∈M in Line 13] = xu,v ·min

(
1,

1/2 + c

g(u, v)

)
· g(u, v) ≥ (1/2− c) · xu,v. (8)

We therefore wish to prove that the probability of (u, v) being matched in Line 18 is at least
2c · xu,v, for some choice of pu,v ≤ 1. And indeed,

Pr[(u, v) added toM in Line 18] = xu,v ·
∑
w 6=u

Pr[Fu,v, Rv, u1 = w] · pu,v

≥ xu,v · Pr[Fu,v] ·
∑
w 6=u

xw,v ·
(

1/2− c− 6c

1/2− c

)
· pu,v

≥ xu,v · (1/2− c) · (1− 4c) ·
(

1/2− c− 6c

1/2− c

)
· pu,v

≥ 2c · xu,v,

where the first inequality follows from Corollary 3.9 and Equation (3). The second inequality
holds due to Equation (5) implying Pr[Fu,v] ≥ 1/2− c and due to vertex u having high degree at
time v, and therefore by the fractional matching constraint xu,v ≤ 1 − 1/2−c

1/2+c = 2c
1/2+c ≤ 4c, and

hence
∑

w 6=u xw,v ≥ 1− 4c ≥ 0 (again using Equation (3)). The final inequality holds for pu,v = 1
and for our choice of c, by Equation (2).

Consequently, combining the above with Equation (8), we find that setting pu,v = 1 results in
(u, v) being matched in either Line 13 or Line 18 with probability at least

Pr[(u, v) ∈M] ≥ (1/2 + c) · xu,v. (9)

As the probability of (u, v) being added to M in Line 18 is monotone increasing in pu,v, we
conclude that there exists some pu,v ∈ [0, 1] for which Equation (9) holds with equality.

Conclusion of Algorithm 1’s analysis. To conclude, Algorithm 1 is well-defined, and this
algorithm outputs a random matching M which matches each edge e with probability precisely
Pr[e ∈M] = (1/2 + c) · xe. Theorem 3.1 follows.

Remark 2. Computational Aspects: As described, the only way we are aware of to imple-
ment Line 17 exactly (and in particular, computing all pu,v exactly) is using an exponential-time
algorithm maintaining the joint distributions as they evolve. However, a simple modification of
the algorithm, resulting in a polynomial-time algorithm with a (1 + o(1)) additional multiplicative
loss in each edge’s matching probability, can be readily obtained by approximately estimating the
above pu,v up to (1± o(1)) multiplicative errors, by standard monte carlo methods. As this results
in rather cumbersome descriptions and subsequent calculations, and since running time is not our
focus, we do not expand on this.
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4 Putting it all Together

In this section we prove our main result, Theorem 1.2, restated below for ease of reference.

Theorem 1.2. There exists an online edge coloring algorithm which is (1.897 + o(1))-competitive
w.h.p. on general n-node graphs with maximum degree ∆ = ω(log n) under vertex arrivals.

Proof. For a graph of maximum degree at most ∆, assigning x-value 1/∆ to each edge yields a
fractional matching. Applying Algorithm 1 to this fractional matching in a bipartite graph under
vertex arrivals results in each edge being matched with probability 0.527/∆, by Theorem 3.1.
Therefore, by Lemma 2.2, there exists an online edge coloring algorithm whose competitive ratio
is (1/0.527 + o(1)) ≈ 1.897 + o(1) w.h.p. on bipartite graphs of maximum degree ∆ = ω(log n)
under (interleaved) vertex arrivals. Finally, Lemma 2.1 together with union bound implies that the
same competitive ratio (up to o(1) terms) carries over to general graphs under vertex arrivals.

Remark 3. Our analysis extends to prove the slightly tighter result, whereby there exist constants
c1, c2 > 0 and a (2 − c1)-competitive online algorithm for n-node graphs of maximum degree at
least c2 · log n under vertex arrivals. (See Remark 1.) For brevity’s sake, we omit the details.

5 Conclusion

In this work we resolve the longstanding conjecture of Bar-Noy, Motwani and Naor, namely
Conjecture 1.1. That is, we show that, while for bounded-degree graphs the greedy algorithm’s
competitive ratio of 2 is optimal among online algorithms, for high-degree graphs this is not the
case.

Some natural questions remain. What is the best achievable competitive ratio? Is a ratio
of 1 + o(1) possible, as for one-sided arrivals in bipartite graphs and random-order edge arrivals
[5, 9]? Can the same be achieved under adversarial edge arrivals? Bar-Noy et al. [4] suggested
a candidate algorithm for this latter model, but its analysis seems challenging. Finally, does the
online rounding Algorithm 1 have more applications beyond edge coloring?

Acknowledgements We thank Janardhan Kulkarni for drawing our attention to [25]. This
research is partially supported by NSF award 1812919, ONR award N000141912550, and a gift
from Cisco Research.

Appendix

A The Karloff-Shmoys Approach: Online

Here we substantiate our earlier assertion that α-competitive online edge coloring on high-degree
graphs is equivalent (up to o(1) terms) to the same task on high-degree bipartite graphs. That is,
we outline the proof of Lemma 2.1, restated below for ease of reference.

Lemma 2.1. (Implied by [25]) Given an online edge coloring algorithm which is α-competitive
w.h.p. on bipartite graphs of maximum degree ∆ = ω(log n) under interleaved vertex arrivals, there
exists an online edge coloring algorithm which is (α+ o(1))-competitive w.h.p. on general graphs
of maximum degree ∆ = ω(log n) under vertex arrivals.

Proof. The general graph edge coloring algorithm relies on the following subroutine for sampling
balanced random subgraphs in subgraphs of maximum degree ∆′ ≥ 18 ·

√
∆ log n. (Note that

∆ ≥ 18
√

∆ log n, by the hypothesis, whereby ∆ = ω(log n).) Assign each vertex to a set Vi ⊆ V
with i = 1, 2 chosen uniformly at random. For any vertex v ∈ V , let d(v) denotes the degree
of v in G, and Dv denotes the (random) degree of v in the random bipartite subgraph H =
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H(V1, V2, E ∩ (V1 × V2)). Then, we have that E[Dv] = d(v)/2 ≤ ∆′/2. By Chernoff’s Bound
(Proposition B.1), since Dv is the sum of independent Bernoulli(1/2) variables, we have that, for
ε = 4

√
log n/∆ = o(1),

Pr[Dv ≥ (∆′/2) · (1 + ε)] ≤ exp

(
−(∆′/2) · ε2

3

)
≤ 1

n3
, (10)

using ∆′ ≥ 18 ·
√

∆ · log n, and consequently ∆ · ε2 ≥ 18 log n. The same high-probability bound
holds for d(v)−Dv, which is identically distributed to Dv.

To achieve an online edge coloring algorithm for G from the above, we apply the α-competitive
edge coloring algorithm to the random bipartite H, and recursively apply the same approach to
the random subgraph induced by the edges outside of H, namely G \ H = G[E \ (V1 × V2)],
until H is guaranteed to have degree at most 18 ·

√
∆ · log n w.h.p. We note that this approach

can be applied online, by assigning to each vertex v on arrival a side of each of the recursive
random bipartitions. Moreover, the colors of each recursive level number ` can be associated with
a contiguous set of integers of cardinality α ·∆ · ((1 + ε)/2)`, which is the high probability upper
bound on the number of colors used in this recursive call. Repeating the above recursively for
t := log2/(1+ε)(18

√
∆/ · log n) ≤ log n levels results in a random uncolored subgraph of maximum

degree at most 18
√

∆ · log n = o(∆) w.h.p., which we color greedily.
Taking union bound over the O(n2) bad events (some vertex degreeDv exceeding ∆′·((1+ε)/2)

in a random bipartite subgraph or its complement in a subgraph whose maximum degree is
∆′ ≥ 18

√
∆ · log n, or any of the bipartite edge coloring algorithms failing to be α competitive on

the subgraph it is applied to), we have that w.h.p., the number of colors C used is, as desired, at
most

C ≤ α ·∆ · 1 + ε

2
+ α ·∆ ·

(
1 + ε

2

)2

+ · · ·+ α ·∆ ·
(

1 + ε

2

)t
+ 36 ·

√
∆ · log n

≤ α ·
∑
i≥1

∆ ·
(

1 + ε

2

)i
+ 36 ·

√
∆ · log n

= α ·∆ · 1 + ε

1− ε
+ o(∆)

= (α+ o(1)) ·∆.

Remark 4. As stated in the introduction, we note that the above reduction from general to bipartite
graphs results in bipartite graphs with interleaved vertex arrivals.

B Edge Coloring from Random Matchings

In this section, we show how to reduce edge coloring in (bipartite) graphs under vertex arrivals
to computing a random matching which matches each edge with probability Ω(1/∆).

Lemma 2.2. (Implied by [9]) Let A be an online matching algorithm which on any (bipartite)
graph of maximum degree ∆ ≤ ∆′ under vertex arrivals, matches each edge with probability at least
1/(α∆′). Then, there exists an online edge coloring algorithm A′ which is (α+ o(1))-competitive
w.h.p. for (bipartite) graphs of maximum degree ∆ = ω(log n) under vertex arrivals.

Proof. If α > 2, then the claim follows trivially from the greedy algorithm’s 2-competitiveness.
We therefore assume α ≤ 2. We give a subroutine which decreases the uncolored degree of a
subgraph of maximum degree ∆′ ≥ 48 · 4

√
∆3 log n at a rate of one per α + o(1) colors w.h.p.

(Note that ∆ ≥ 48 4
√

∆3 log n, by the hypothesis, whereby ∆ = ω(log n).)
Our subroutine is as follows. Let L := 12

√
∆ log n and ε := 4

√
(log n)/∆(= o(1) ≤ 1/2). We

note that by our choice of L and ε and our lower bound on ∆′, we have that

4L/∆′ ≤ 48
√

∆ log n/48 4
√

∆3 log n = 4
√

(log n)/∆ = ε. (11)
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For i = 1, . . . , dα · Le, we run Algorithm A, which matches each edge with probability at least
(1/α)/∆′, and color all previously-uncolored matched edges in this run ofA using a new (common)
color. Fix a vertex v whose degree in the subgraph is at least d(v) ≥ ∆′−dα·Le and letX1, . . . , XL

be indicators of v having an edge colored during application i = 1, . . . , dα · Le of Algorithm A.
Since vertex v can have at most dα · Le ≤ 2 · L edges colored during these L applications of
Algorithm A, we find that the number of uncolored edges of v at any point during this subroutine
is at least ∆′−2dα ·Le ≥ ∆′−4L, independently of previous random choices. On the other hand,
since each uncolored edge is matched (and hence colored) with probability at least (1/α)/∆′, we
have that for any history H of random choices in applications 1, 2, . . . , i− 1 of A, application i of
A results in one of the (at least) ∆′ − 4L uncolored edges of v being colored with probability at
least

Pr[Xi | H] ≥ (1/α) · (∆′ − 4L)/∆′ = (1/α) · (1− 4L/∆′) ≥ (1/α) · (1− ε), (12)

where the last inequality relied on Equation (11). Combining Equation (12) with standard cou-
pling arguments (Proposition B.2) together with a Chernoff Bound (Proposition B.1), we find
that the number of colored edges of v, denoted by X :=

∑
iXi satisfies

Pr[X ≤ L · (1− ε)2] ≤ exp

(
−L · (1− ε) · ε2

2

)
≤ exp

(
−L · ε2

4

)
=

1

n3
,

where the second inequality follows from ε ≤ 1/2 and the equality follows from choice of L and
ε. Union bounding over the n vertices, we obtain the following high probability bound on the
maximum degree of the uncolored subgraph H after the dα · Le applications of A:

Pr[∆(H) ≥ ∆′ − L · (1− ε)2] ≤ 1

n2
. (13)

We now describe how to make use of this subroutine. For r = 1, . . . ,∆/L phases, let ∆i :=
∆ − (i − 1) · L · (1 − ε)2. If ∆i < 48 4

√
∆3 log n, apply the greedy coloring. Otherwise, apply

the above subroutine with ∆′ = ∆i. A simple inductive argument together with union bound,
relying on Equation (13), shows that for i = 1, 2, . . . ,∆/L(≤ n), the uncolored subgraph after the
first i− 1 phases has maximum degree at most ∆′ ≤ ∆i w.h.p., or alternatively it has maximum
degree at most ∆′ ≤ 48 · 4

√
∆3 log n = o(∆). Moreover, each of these ∆/L phases requires at most

dα·Le ≤ α·L+1 colors, by definition, and therefore these ∆/L phases require at most α·∆+∆/L =
(α + o(1)) · ∆ colors in total. Finally, after these phases we are guaranteed that the maximum
degree of the uncolored subgraph is at most min{48 · 4

√
∆3 log n, ∆− (∆/L) ·L · (1− ε)2} = o(∆).

Applying the greedy algorithm to this uncolored subgraph after the ∆/L phases thus requires a
further 2 · o(∆) = o(∆) colors. This results in a proper edge coloring using (α + o(1)) ·∆ colors
w.h.p.

Finally, we note that the above algorithm can be implemented online under vertex arrivals,
since A works under vertex arrivals. In particular, when a vertex arrives, we perform the next
steps of the different copies of Algorithm A (with the different settings of ∆i) on the uncolored
subgraphs obtained from each phase, simulating the arrival of a vertex in each such uncolored
subgraph. Combined with the above, this yields the desired result: an edge coloring algorithm
which is (α+o(1))-competitive on general n-node graphs of maximum degree ∆ = ω(log n) under
vertex arrivals.

Remark 5. Lemma 2.2 naturally extends to edge arrivals. Unfortunately, no algorithm matching
each edge with probability (1/α)/∆ subject to edge arrivals is currently known for any constant
α < 2.

Remark 6. The approach of Lemma 2.2 only requires matching algorithms which match each edge
with probability (1/α)/∆ for subgraphs of the input graph. Consequently, improved matching
algorithms, with smaller α ≥ 1, for any downward-closed family of graphs F imply a similar
improved (α+ o(1))-competitive edge coloring algorithm for the same family.
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B.1 Probability Basics

Here we include, for completeness, a number of basic probabilistic results used in this paper.

Proposition B.1 (Chernoff Bound). Let X =
∑

iXi be the sum of independent Bernoulli random
variables Xi ∼ Bernoulli(pi), with expectation µ := E[X] =

∑
i pi. Then, for any ε ∈ (0, 1), and

κ ≥ µ,

Pr[X ≥ κ · (1 + ε)] ≤ exp

(
−κ · ε2

3

)
.

Pr[X ≤ µ · (1− ε)] ≤ exp

(
−µ · ε2

2

)
.

Proposition B.2 (Coupling). Let X1, . . . , Xm be binary random variables such that for all i and
~x ∈ {0, 1}i−1,

Pr

Xi = 1

∣∣∣∣∣ ∧
`∈[i−1]

(X` = x`)

 ≥ pi.
If {Yi ∼ Bernoulli(pi)}i are independent random variables, then for any k ∈ R,

Pr

[∑
i

Xi ≤ k

]
≤ Pr

[∑
i

Yi ≤ k

]
.

Proposition B.3. Let A and B be Bernoulli random variables. Then

Cov(A,B) = Cov(1−A, 1−B).
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