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Correlated Equilibria

Lecturer: Amin Saberi Scribe: Alex Shkolnik

1 The Chicken-Dare Game

The chicken-dare game can be throught of as two drivers racing towards an intersection. A player can chose
to dare (d) and pass through the intersection or chicken out (c) and stop. The game results in a draw when
both players chicken out and the worst possible outcome if they both dare. A player wins when he dares
while the other chickens out. The game has one possible payoff matrix given by

d c
d 0, 0 4, 1
c 1, 4 3, 3

with two pure strategy Nash equilibria (d, c) and (c, d) and one mixed equilibrium where each player mixes
the pure strategies with probability 1/2 each.

Now suppose that prior to playing the game the players performed the following experiment. The players
draw a ball labeled with a strategy, either (c) or (d) from a bag containing three balls labelled c, c, d. The
players then agree to follow the strategy suggested by the ball. It can be verified that there is no incentive
to deviate from such an agreement since the suggested strategy is best in expectation.

This experiment is equivalent to having the following strategy profile chosen for the players by some third
party, a correlation device.

d c
d 0 1/3
c 1/3 1/3

This matrix above is not of rank one and so is not a Nash profile. And, the social welfare in this scenario is
16/3 which is greater than that of any Nash equilibrium.

2 Correlated Equilibrium

We consider players p = 1, 2, . . . , n each with strategy set Sp defining the strategy profile

S =
n∏

p=1

Sp

with S−q denoting the profile for all players except player q. The payoffs for each player player p are functions
up on the strategy profile S into the nonnegative integers.

We define x as a distribution on S (i.e x ≥ 0 and
∑

s∈S xs = 1) where for s̄ ∈ S−p we denote by xi,s̄ the
probability that player p takes strategy i while everyone else plays s̄. Similarly, up

i,s̄ is the payoff to player p
for taking strategy i ∈ Sp while everyone else plays s̄.
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The distribution x is a correlated equilibrium (CE) if and only conditioned on player p accepting the recom-
mended strategy i ∑

s̄∈S−p

up
i,s̄xi,s̄ ≥

∑
s̄∈S−p

up
j,s̄xi,s̄ ∀p and ∀i, j ∈ Sp

i.e. the expected payoff from playing the recommended strategy is no worse than playing any other strategy.

Then, correlated equilibrium conditions can be written as the following linear program.∑
s̄∈S−p

(
up

i,s̄ − u
p
j,s̄

)
xi,s̄ ≥ 0 ∀p and ∀i, j ∈ Sp

xs ≥ 0 ∀s ∈ S (CE)∑
s∈S

xs = 1

We can also optimize for some objective function, for example the social welfare, over these conditions.
Notice that the number of variables in this LP is the cardinality of S. Therefore this LP is exponentially
long. However, the number of constraints which include the utilities is

∑n
p=1

(|Sp|
2

)
which is polynomial in

the number of players and number of strategies per player.

3 Existence

We consider the following LP in the variables xs for s ∈ S and its dual program

max
∑

s

xs

Ux ≥ 0 (P ) ‘UT y ≤ −1 (D)
x ≥ 0 y ≥ 0

where the constraint matrix U are the utility coefficients from the definition of (CE) i.e. row i, j, p with
i, j ∈ Sp and column s ∈ S entry up

i,s − up
j,s. With the exception of the trivial solution, which cannot

correspond to any probability distribution, all solutions of (P ) are unbounded. Then by the Weak Duality
theorem, the dual (D) is infeasible.

Furthermore, for any probability distribution and any dual feasible y the quantity xUT y clearly must be
negative. We now show that there exists x 6= 0, x ≥ 0 such that xTUT y = 0 for all y ≥ 0. We first expand
the quantity xTUT y as follows.

xTUT y = yTUx

=
∑
i,j,p

yp
ij

∑
s̄∈S−p

(uP
i,s̄ − u

p
j,s̄)xi,s̄

=
∑
i,j,p

∑
s̄∈S−p

yp
iju

p
i,s̄xi,s̄ −

∑
i,j,p

∑
s̄∈S−p

yp
iju

p
j,s̄xi,s̄ (∗)

Now consider x which is a product distribution, that is xs =
∏n

p=1 x
p
sp with s = (s1, s2, . . . , sn) ∈ S and

player p strategy profile xp. For player p with strategy k ∈ Sp and s̄ ∈ S−p the coefficient of utility up
k,s̄ is

obtained by fixing a player p and strategy k ∈ Sp in (∗). The coefficient is∑
j∈Sp

yp
kjxk,s̄ −

∑
i∈Sp

yp
ikxi,s̄ = xk,s̄

∑
j∈Sp

yp
kj −

∏
q 6=p

xp
sq

∑
i∈Sp

yp
ikx

p
i

=
∏
q 6=p

xq
sq

xp
k

∑
j∈Sp

yp
kj −

∑
i∈Sp

yp
ikx

p
i

 .
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Since xTUT y is linear in the utilities we can normalize the yp
ij ’s such that for each p we have

∑
j y

p
ij = 1.

We then have the coefficient ∏
q 6=p

xq
sq

xp
k −

∑
i∈Sp

yp
ikx

p
i


multiplied by some normalizing factor.

Notice that these are equations for the stationary distribution xp of a Markov chain for player p with
transition matrix given by the normalized yp

ij ’s. Defining a product distribution x using these stationary
distributions for each player then ensures that xTUT y = 0. We conclude that (P ) is infeasible, then solutions
to (P ) are unbounded and therefore a correlated equilibrium (CE) exists.

4 Computation

The algorithm for computing a correlated equilibrium in polynomial time relies on the fact that the dual,
unlike the primal, has polynomially number of variables. The steps of the algorithm are as follows.

• Run k step of the ellipsoid method producing k candidate points yi.

• Compute distributions x1, x2, . . . , xk such that xT
i U

T yi = 0.

• Let X be a matrix of rows xi and compute α ≥ 0 such that (UXT ) α ≥ 0.

In the first step we attempt to solve (D) with the ellipsoid method, which in polynomially many steps should
determine that the program is infeasible. Each step the ellipsoid method produces a candidate solution yi.
Terminate after k produced a sequence y1, y2, . . . , yk and by the results of the previous section we can find
x1, x2, . . . , xk such that xT

i U
T yi = 0. Therefore, (XUT )y ≤ −1 is also an infeasible linear program, the dual

of which is given by (UXT )α ≥ 0. This linear program is unbounded with XTα, a distribution satisfying
the original program (P ), implying a correlated equilibrium.

The first two steps of the algorithm are polynomial in the number of players and number of strategies
per player. The final linear program is of polynomial size and α can be computed efficiently. However, the
construction of matrix UXT is not, as the number of columns of U is exponential. We now have the following
theorem.

Theorem: There is a solution of (CE) that is a convex combination of polynomially many product dis-
tributions. Furthermore, an oracle for computing UTX yields a polynomial time algorithm for computing
correlated equilibria.

Such an oracle is available for many classes of succinct games including congestion games, graphical games,
polymatrix games, symmetric games, etc [1].

5 Properties

An interesting property shown by [S. Hart, A. Mas-Colell, 2000] is that if players play the game repeatedly
and are allowed to depart from strategies which they regret, the empirical distribution of play approaches a
correlated equilibrium. That is, history can act as a correlation device with learning dynamics approaching
the set of correlated equilibria (CE).

We can also show that (CE) has the following properties.

• Every Nash equilibrium is a correlated equilibrium.

• Every Nash equilibrium lies on the boundary of (CE).
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The first is trivially true since every Nash equilibrium will satisfy (CE) conditions. For the second property,
notice that the space of correlated equilibria is convex and nonempty described by equations (CE). We can
show that for every Nash equilibrium distribution at least one inequality in (CE) is satisfied exactly.

If the one of the player’s support does not include a strategy, then clearly the probability of the state t
where the player takes that strategy is zero. Thus xt = 0 in (CE) and the Nash equilibrium must be on the
corresponding face of the convex polygon.

If all strategies of each player are in the supports then the utility equations must take the form∑
s̄∈S−p

(
up

i,s̄ − u
p
j,s̄

)
xi,s̄ = 0 ∀i.j ∈ Sp

i.e. the strategies should give the same payoff for the mixed Nash equilibrium. So, the Nash equilibrium is
again on the boundary.
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