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Abstract. Investments in enabling technologies—including the fifth-generation technol-
ogy standard for broadband cellular networks (5G), artificial intelligence (AI), and light
detection and ranging (LIDAR) technology—are important strategic decisions for firms.
This paper asks how inventions that private firms developed with (versus without) public-
sector partners differ in their enabling technology trajectory. Using a novel method of
machine learning matching, we compare patented technologies generated from more than
30,000 public—private relationships with comparable technologies invented by private
firms alone during a 21-year period. To measure the enabling potential of a technology, we
introduce a new enabling technology index. The findings show that private-firm rela-
tionships with the public sector—in particular cooperative agreements and grants with
mission agencies (National Aeronautics and Space Administration and Department of
Defense)—are likely starting points for enabling technology trajectories. We thus put a
spotlight on organizational arrangements that combine the breadth of exploration
(agreements, grants) with deep exploitation in a particular domain (mission agency). A
key contribution is a better understanding of the types of private-firm efforts that are
associated with enabling technologies. We also challenge the common assumption that
enabling technologies have their origins only in public-sector projects and show how
private firms are involved. Our significant contribution is to show how private firms can

change evolution of ecosystems through technology development.

Funding: This study was supported by the Stanford Technology Ventures Program.

Keywords: enabling technology * innovation * collaborations « public-private research and development (R&D) relationship
governments * organizational learning * organizational search * exploration « exploitation
Introduction has examined the enabling technology trajectory of

Enabling technologies are strategically important. By
definition, these technologies are novel, they enable
complementary innovations often downstream in the
value chain, and they have become widely used
across industries and industry sectors (Teece 2018a,
Gambardella et al. 2019). The list of much-discussed
general-purpose technologies (GPTs) is short and
includes only a select few that have game-changing
impact across the economy as a whole (e.g., elec-
tricity, the internet; Bresnahan and Trajtenberg 1995,
Lipsey et al. 2005). In contrast, the list of enabling
technologies, that is, junior GPTs, includes many
technologies that are disruptive and growth enabling
in particular industries but not necessarily with mea-
surable economy-wide impact (e.g., light detection and
ranging (LIDAR) technology, the fifth-generation tech-
nology standard for broadband cellular networks (5G)
(Teece 2018a))." Recent case- and technology-specific
evidence suggests that private (for-profit) firms are
increasingly involved in the use of enabling technolo-
gies (Teece 2018b, Webb et al. 2018), but little research

inventions developed by private firms (Rathje, 2019).
Consequently, we ask in this study how enabling are
the technologies developed by private firms.

To address this research question, we evaluate the
technology outcomes of more than 30,000 public-
private relationships and comparable private-firm-
only efforts over a 21-year period from 1982 to 2002.
We implement a hybrid machine learning—propensity
score matching approach to identify treatment—control
pairs and to enhance causal inference (Rathje and
Katila 2019). In the data, private firms’ relationships
with the public sector—which are traced using the
government interest statement in patent documents—
differ primarily by public-sector partner (i.e., who the
firm partners with) and by relationship type (i.e., how
the relationship is structured). We investigate varia-
tion in mission agencies versus science agencies as
public-sector partners” and include grants, contracts,
and cooperative agreements as relationship types.’
Altogether our data enable a comprehensive analysis
of how private firms spawn enabling technologies.
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There are several contributions. First, we unpack
how enabling the inventions created by private firms—
with public partners or not—become in the long run.
We find that public—private relationships that com-
bine the breadth of exploration (agreements, grants)
with deep exploitation in a particular domain (mission
agency) are likely to be conducive of enabling tech-
nologies. Interestingly, contracts—that agency theory
designates as the most effective (Bruce et al. 2019) —
have much weaker effects. For strategy, these results
show that private firms can indeed create enabling
technologies together with the government. Intrigu-
ingly, even when the government partner is a large
end user (e.g., mission agency) and potentially nar-
rowly focusing on a particular commercialization
(Christensen et al. 2018), specific relationship types
such as grants that offer greater latitude in the rela-
tionship can be a balancing force and serve as a
starting point for an enabling technology trajectory.

Second, there are contributions to public policy. We
add to the evidence that targeted government rela-
tions with private firms can support innovation (Bloom
et al. 2019). We particularly find evidence of the
positive role of public—private relationships in gen-
erating enabling technologies. If the goal of policy is
to support innovation that generates knowledge spill-
overs and enables growth within and across sectors,
we identify that agreements and grants with mission
agencies in particular are aligned with this goal during
the time period that we study.

Third, there are contributions to how ecosystems
evolve (Adner and Kapoor 2016). We find that firms
and their government collaborators can seed eco-
systems with technologies that enable subsequent
innovation by ecosystem participants and therefore
shape how ecosystems evolve. More broadly, the
results point in the direction that private firms, to-
gether with public partners, can be important in the
evolution of ecosystems.

Finally, there are methodological contributions. We
introduce a continuous enabling technology index
(ETI) and its components. Prior work has often ex-
amined specific enabling technologies, such as arti-
ficial intelligence (AI), but has yet to provide a con-
tinuous operationalization of enabling technology.
Because every technology does, to some degree, en-
able future innovation, we introduce a continuous,
tractable index that enables us to quantify enabling as a
fundamental attribute of a technology. Given that many
enabling technologies are rapidly generating new op-
portunities and strategic challenges for firms and their
decision makers, this index helps, for example, accurately
track the potential of a firm’s own efforts and those of the
key organizations in the firm’s ecosystem, including
suppliers, competitors, collaborators, and complementors
and their enabling technology potential.

Another methodological strength of our paper is a
novel machine learning—propensity score matching
(ML-PSM) method that enables enhanced causal in-
ference for strategic management research (Stuart and
Rubin 2008, Rathje and Katila 2019). Specifically, we
build on the advantages of supervised machine learning
to intelligently expand the set of observable covariates in
the matching process. The result is more precise treatment—
control pairs and a stronger push toward causality.

Private Firms, Public-Sector Relations,

and Enabling Technologies

Public-sector governments have long worked in vari-
ous capacities with private firms to enable research
and development (R&D) that benefits society at large
(Bloom et al. 2019). The public sector’s support of
private-firm R&D is based on two fundamental as-
sumptions: (1) that the technical capabilities of private
firms are essential to knowledge production and
economic growth and (2) that the relatively high risk
of funding high-impact, widely usable innovation
that is often of the most benefit to society causes
private firms to underinvest in them. Thus, policy-
makers hope to lower the costs of R&D for private
firms in order to generate high-impact innovation—
such as enabling technologies—that benefits not only
the firm but also other firms and society at large.

Prior Work on Public-Sector Support of Private-Firm
Research and Development
The public sector typically uses three main types of
arrangements to support high-impact R&D in private
firms: university funding, tax credits, and R&D re-
lationships. In many nations, public funding agencies
fund universities and national laboratories to conduct
scientific discovery. The results are fully disclosed.
The hope is that this scientific knowledge will spill over
to private firms and inspire them to further invest in
developing high-impact (rather than more incremental)
innovation (Jaffe and Lerner 2001, Link et al. 2011).
Although not directly in terms of enabling technologies,
Azoulay etal. (2019b) illustrate this mechanism. They
find that a $10 million increase in National Institutes
of Health (NIH) funding to academics in a research
area lead to 2.7 additional patents filed by private
firms. Altogether the core premise is that university
and national laboratory funding could set off technology
projects (including enabling ones) in private firms, but
this mechanism is indirect and does not provide a direct
subsidy for private firms or for specific projects.
Second, R&D tax credits* enable firms to decrease
the cost of R&D and fund more projects, but again,
these public subsidies typically cannot be tied to spe-
cific projects. The risk, then, is that many credits are
used for incremental R&D. For instance, Pless (2019)
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shows that tax credits increase R&D effort, particu-
larly by small UK firms, but it is unclear whether the
efforts will have wide-ranging impact. Balsmeier
et al. (2018) similarly show that although California
firms’ patents after the 1987 R&D tax credit are more
highly cited by other firms—thus indicating greater
public knowledge spillovers—tax credits also help
firms engage in actions that only benefit the focal firm
and not the community at large, such as strategic pat-
enting. Thus, similar to university funding, the im-
pact of R&D tax credits is likely to be indirect at best.
Third, and most significantly for our paper, the
public sector engages in public—private R&D relation-
ships.” In these public—private R&D relations, a public
funding agency and a private firm jointly solve a com-
plex, potentially high-impact technical problem (David
etal. 2000, Zuniga-Vicente et al. 2014), and the partner
private firm often retains exclusive rights to the results
(Pahnke et al. 2015, Howell 2017, Bruce et al. 2019).
Legislation typically defines the types of R&D re-
lationships that the public sector has with private
actors. In the United States, the Federal Grant and Co-
operative Agreement Act of 1977 outlines three main
types: grants, contracts, and cooperative agreements.
Grants are direct financial subsidies given to a firm
by a public funding agency as an investment toward
an objective specified by the agency (U.S. Congress
1977). Grants are often used to advance a national ob-
jective, address a public problem, or stimulate an activity
desired by the government. Grants allow considerable
latitude, and the grant recipient (i.e., the firm) often
defines the scope of work because there are no legally
binding requirements to achieve results (Rathje 2019).°
By contrast, the second type of relationship, that is,
contract, is a leader—follower relationship. A contract
isabinding agreement between a buyer and a seller to
provide goods or services in return for compensation
(Rathje 2019). In government contracts with private
firms, the contracting agency is looking to procure a
good or a service that will be of direct benefit to the
government. Contracts differ from grants because
there is often a built-in customer, and payments are
often based on deliverables and milestones. Although
contracts can take many forms, the most common
form is a cost-plus contract.” Public agencies use cost-
plus contracts, as opposed to other contract forms,
when they want to purchase an immature (i.e., po-
tentially high-impact) end product. To derisk the
firm’s investment in a new technology with relatively
uncertain development costs, the public agency agrees
to pay both the entire cost of development and a
standardized profit margin. The profit margin may
vary significantly depending on the risk of the proj-
ect, but it generally stays small. For example, in the
United States, the maximum profit margin for a cost-
plus contract is 15% (Arnold et al. 2008). Because they

are commonly used for more immature technologies
that involve patents, cost-plus contracts serve as the
basis for our understanding of contractual relations
between private firms and the public sector.

Third, cooperative agreements (agreements for short)
are public—private relationships in which firms and
public agencies agree to work side by side toward a
mutual objective (U.S. Congress 1977). They differ
from grants and contracts by the degree to which the
public and private entities are expected to cooperate
after the award. In agreements, federal employees
often are substantially involved in the execution of the
work and participate closely in performing the work
side by side with the private firm (Rathje 2019). In
contrast, federal agencies usually take on purely moni-
toring and oversight roles once, for example, a grant
is awarded. Another difference is that agreements
cannot be used to acquire goods or services for the
federal government. They differ from contracts in
that regard and therefore often allow greater latitude in
project scope. In cooperative agreements, the part-
nering firms and public agencies are free to determine
their interaction pathways and schedules (Ham and
Mowery 1998, Bruce et al. 2019).8 In other words,
interaction between public and private researchers is
required, but the format for interaction, unlike in
contracts, is not specified ex ante (Mowery 2009,
Lerner 2012). Agreements can be attractive for firms
because they allow collaborative, peer-to-peer work-
ing relationships between private firms and, for ex-
ample, a wide variety of highly capable national lab-
oratory technical talent at low or no cost to the firm.

In general, research is inconclusive on the effects of
public—private R&D relationships. Some research has
found positive associations with high-impact innovation
(Azoulay et al. 2019a, Moretti et al. 2019), whereas
other studies have not found significant effects (Pahnke
et al. 2015). Some recent work points in the direction
of suggesting that certain types of relationships could
produce more high-impact innovation than others (Bruce
et al. 2019). To sum up, whereas university funding
and tax credits are indirect, general ways of government
subsidy, R&D relationships can be targeted to specific
purposes and thus possibly to support enabling technol-
ogies, but their effectiveness is debated. This third category
of government R&D subsidies, that is, public-private
R&D relationships, is the focus of this paper.

Gaps in Prior Work

To explain the occasionally conflicting findings of
prior work, we focus on two major gaps in the study of
private-public R&D relationships: incorporating the
variety of partner and relationship types.

Partner Type. First, heterogeneity in public-partner agencies
deserves more attention (Dasgupta and David 1994).
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Prior work has taken a homogeneous view or focused
on one agency at a time (Fuchs 2010, Pahnke et al.
2015). This work does not pay attention to differences
in partner agencies or how each agency’s unique goals
may impact the relationship. This is particularly sig-
nificant for our paper because an agency’s goals are
likely to influence the enabling technology trajectories
that the relationship spawns. Distinguishing between
different types of agencies is also significant because
policy in many nations often treats agencies differ-
ently. Overall, our understanding of public—private
relationships could benefit from more directly setting
the agencies side by side.

The commonly used distinction between mission
and science agencies is likely to be relevant (Ergas
1987). Mission agencies are defined as programmatic
agencies with the goal of achieving practical goals; that
is, they focus on an agency’s mission. Ergas (1987)
defines mission-oriented agencies as closely synony-
mous with agencies whose goal is national sover-
eignty and who use radical innovations to achieve
national goals and are often centrally managed, in-
cluding the Department of Defense (DOD) and the
National Aeronautics and Space Administration (NASA)
in the United States. In contrast, science agencies in-
cluding the National Science Foundation (NSF), the
NIH, and the National Institutes for Standards and
Technology (NIST) are science focused (Ergas 1987),
and their goal is to provide the scientific freedom for
private firms to pursue their own research goals.
Another difference is that mission agencies often act
as lead markets, whereas science agencies do not.

Relationship Type. Second, incorporating a full range
of public—private R&D relationship types deserves
more attention (Feldman and Kelley 2006; Hiatt et al.
2017). By focusing on a single type of relationship in
isolation—often grants—prior work is often agnostic
to differences across relationship types. For example,
our analysis of published work over the past 30 years in
journals in the intersection of private-firm strategy and
public policy shows that almost 70% of articles on
public—private R&D relationships focus on grants,
although less than 40% of the relationships are grants.
We also found that grants were, on average, two
to seven times more likely to be covered by each
of the publications than contracts and collaborative
agreements (i.e., 2.3, 7.4, 2.1, and 4.7 in Strategic
Management Journal, Research Policy, Management Science,

Table 1. Public Agencies

and Academy of Management Journal, respectively).
Altogether, grants are typically overrepresented in
prior work.

Setting different relationship types side by side is
useful because they often involve very different struc-
tures of interaction between public and private or-
ganizations (e.g., a grant is arm’s length, but other
relationships follow peer-to-peer or leader—follower
structures; Rathje 2019). Altogether, as Bruce et al.
(2019) note, considering the full range of types could
be important for a comprehensive analysis of public—
private relationships. Tables 1 and 2 summarize these
differences that are likely to be meaningful for sub-
sequent enabling technology trajectories.

Private—Public Relationships and
Enabling Technologies
Core Components of Enabling Technologies. Building
on Teece (2018a), we define enabling technologies
as (1) pervasive, (2) novel and improvable, and (3) sup-
portive to spawn complementary innovations. Perva-
sive technologies are those in wide use in an industry
or with widespread application across multiple do-
mains (Teece 2018a, Gambardella et al. 2019). Take,
for example, LIDAR. LIDAR was created from a rela-
tively simple concept—using light to measure dis-
tances between two objects (Neff 2018). Today, the
technology is used in a broad spectrum of application
sectors from autonomous driving to guided weapons
and is therefore considered highly pervasive.
Second, enabling technologies are novel and ca-
pable of being continuously improved.’ For instance,
LIDAR has served as a foundational technology for
many subsequent inventions, and these inventions
have, in turn, spurred continual development in the
core LIDAR technology. MonoLIDAR was the funda-
mental technology enabling the Defense Advanced
Research Projects Agency’s (DARPA’s) 1985 autono-
mous land vehicle, thought to be the world’s first fully
autonomous vehicle (Burns 2018). Twenty years later,
Ford engineers David Hall and Jim McBride intro-
duced rotating LIDAR in DARPA’s Grand Challenge,
capturing LIDAR measurements in stereo. This ad-
vancement was widely acknowledged to be one of the
most important catalysts for the creation of today’s
autonomous vehicle market. Because LIDAR is ca-
pable of ongoing improvement and is consistently
introduced in new ways, it is considered a novel and
improvable technology.

Classification Definition Examples Contribution

Science Goal is to increase scientific National Science Foundation, Freedom for scientific inquiry
knowledge and understanding National Institutes of Health

Mission Goal is to fulfill practical goals Department of Defense, NASA Early monopsony buyer

for the agency such as procure technologies
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Table 2. Relationship Types

Classification Definition Public-Sector contribution
Grant No required direct interaction Financial resources
with public researchers
Contract Required interaction with public researchers. Financial resources, Structured
Format for interaction is specified ex-ante knowledge flows
Agreement Required interaction with public researchers. Financial resources, Diverse

Format for interaction is not specified.

(i.e., public-private) R&D teams

Third, enabling technologies spawn uniquely com-
plementary innovations; that is, they support future
innovations that cannot be supported by other sup-
plementary technologies. For example, since LIDAR
first flew into space in the Apollo 15 mission, dozens of
LIDAR-based atmospheric, mapping, and communi-
cations satellites have been created and launched, paving
the way for the thriving commercial satellite business
of today.'® Furthermore, after significant technolog-
ical codification and improvement, several consumer-
oriented products such as the laser-based police speed
gun were spawn from the original technology.

Given the attributes of enabling technologies, prior
research has noted that designing a business model to
capture value from enabling technologies is chal-
lenging (Arrow 1962)."" Because enabling technolo-
gies are intermediate inputs in the value chain, they
are often commercialized by downstream firms who
own the required complementary assets (Teece 2000,
2018a). A prime example is the invention of float glass
that drastically reduced the production cost of glass
and facilitated downstream innovations such as flat-
panel displays. However, as Teece (2000) documents,
the inventor, Pilkington Glass, received only about
5% of the benefits, whereas the social rates of return of
this new enabling technology were around 30%. In other
words, pioneers in an enabling technology risk capturing
only a fraction of the value that was created. This sug-
gests that private firms may underinvest and that private
firms’ joint efforts with the government may be par-
ticularly relevant for spawning enabling technologies.
Therefore, understanding how private firms are associ-
ated with enabling technologies, both together with and
without the public sector, becomes important.

Hypotheses

The hypotheses that follow focus on how private
firms’ relationships with public agencies versus the
private firms’ efforts alone can potentially lead the in-
vention into a trajectory that becomes enabling. We also
propose differential effects by public-partner type.

Enabling Technology and

Public-Private Relationships

In Hypothesis 1, we propose that private-firm rela-
tionships with public partners have a positive impact

on enabling technology emergence. First, we expect
public—private relationships to be more positively
associated than private-firm-only efforts with per-
vasiveness. Technologies become pervasive through
widespread application. Because the intent of public—
private relationships is to ensure widespread public
benefit, we expect that the relationships are likely to
spawn technology that is more accessible and ap-
plicable to a broader set of segments (i.e., more per-
vasive) than private firms’ efforts alone. One example
of potential pervasiveness is the relationships be-
tween private firms and the public sector that are
organized through grants. Given that grants are often
based on public calls for proposals, that grant ap-
plications are sent to peer review, and that grant
applications and final reports (at least the abstracts)
are publicly available, it is likely that others can more
readily build on the ideas that result from grants.
Furthermore, because the data and results are often
widely disseminated (e.g., data transparency rules by
the NSF), we expect that inventions that result from
grants can become widely used as stepping stones for
new inventions and technologies (Leatherbee and
Katila, 2020), thus fostering enabling technology tra-
jectories. Cooperative agreements, in turn, can sim-
ilarly increase pervasiveness because diverse R&D
teams are involved (Helpman and Trajtenberg 1994).
This is because the underlying expertise in using the
technology is shared across a broader set of inven-
tors and thus likely to be applied in a broader set of
technology sectors. We therefore expect that tacit
knowledge of any resulting technology would per-
meate both the partnering agency and the firm eco-
system. Finally, although contracts are designed for a
specific procurement purpose, we still expect them to
spawn more pervasive innovations than private firms’
efforts alone because contracts necessitate sharing
the technology with a public-sector partner.

Second, we propose that technologies developed
together with public-sector partners have more po-
tential to spawn complementary innovations than
technologies developed without them. Because com-
plementors must invest significant internal resources to
learn the technology before they can take advantage of it
(Teece 2018a), having the general public or even a
particular government agency as a default customer,
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as is typical in public—private relations, can be par-
ticularly helpful. For example, in contract relation-
ships, the public procuring agency not only acts as a
large lead market for enabling technologies but also
provides translational help by codifying tacit aspects
of the technology for potential builders of enabling
technology (David and Hall 2000, Ahuja and Katila
2004). Similarly, in cooperative agreements, teams
that work together often include a mix of scientists and
lead-user practitioners that facilitates the understanding
of any tacit knowledge related to the technology and the
creation of complementary innovations. Although the
role of the government partner is more limited in grants,
grant recipients are typically asked to reflect on and
outline broader impacts for research, which can fa-
cilitate spawning of complementary innovations rel-
ative to private firms’ efforts alone.

Third, we expect that the diversity of the team when
government is a partner—relative to private firms’
efforts alone—is likely to produce novel and im-
provable technologies. By definition, in public—private
R&D relations, the goal of the public agency and the
private firm is to jointly solve a complex technical
problem, thus increasing the diversity of perspectives
(and resources) that are brought to bear on problem
solving. Cooperative agreements are particularly likely
to involve diverse interdisciplinary teams (e.g., a private
firm’s working relationship with a national labora-
tory) and thus likely to use more varied knowledge
that often underlies novelty (Katila and Ahuja 2002).
Grants and contracts also involve interactions with
public funding partners and the focal firm that can be
conducive of diversity in viewpoints and thus nov-
elty. Thus, we expect public—private relationships to
have a positive impact on the enabling trajectory of
the technologies.

Hypothesis 1. Technologies that are a result of a private
firm's relationships with the public sector become more
enabling than technologies that are a result of a private firm'’s
efforts alone.

Enabling Technology and Mission vs. Science
Agency Partners

In Hypothesis 1, we treated all public—private R&D
relationships as homogeneous and compared their
effects to private-firm-only efforts. In Hypothesis 2,
we propose that there may be differences across types
of public partners—we focus on science versus mis-
sion agencies in particular—that potentially make
some relationships even more likely to start enabling
technology trajectories than others.

Asnoted previously, science agencies including the
NSF and the NIH in the United States are science
focused (Ergas 1987) and aim to accomplish scientific
goals. Science agencies also typically have access to

substantial research funding internally and employ
intramurally a wide variety of scientific personnel.
They also own important national laboratory space,
including sought-after capital-intensive research in-
frastructure. For example, in the United States, sci-
ence agencies control the vast majority of national
user facilities, that is, government-owned laboratory
environments used by academic, government, for-
profit, and not-for-profit organizations. Thus, sci-
ence agencies are well equipped to support private
firms” R&D activities with the intent of furthering
scientific aims.

Mission agencies including the DOD and NASA
are, conversely, generally built to support a national
externality, for example, national security or space
travel. Their mission is to fund and purchase tech-
nology to accomplish these practice-oriented (aka
mission) goals. Mission agencies also differ from science
agencies because they can typically provide access to
lead users within government who can apply the novel
technology to mission needs.

We argue that science agencies are more likely than
mission agencies to serve as starting points for en-
abling technology trajectories for several reasons.
Given the in-house research infrastructure, relation-
ships with science agencies can likely support projects
that cross geographic or technology boundaries and
help firms engage diverse interdisciplinary teams,
thus likely increasing the technology’s pervasiveness.
Because science agencies often support deep knowledge
search and help overcome underinvestment in certain
R&D areas, they are also likely associated with more
novel technologies. We also expect relationships with
science agencies to enhance complementarity because
science agencies often encourage translational efforts
across sectors, not only in a specific sector. Because
these attributes are associated with more enabling
technologies, as noted previously, it is likely, then,
that private firms’ relationships with science agencies
can more positively influence the enabling trajectories
of technologies than relationships with mission agencies.
In contrast, the norms and goals of mission agencies are
to fund demand side innovation by incentivizing the
delivery of products (Edler and Georghiou 2007, Nemet
2009), which may limit pervasiveness, novelty, and
wider complementarity beyond the mission agency’s
lead market. We propose the following hypothesis:

Hypothesis 2. Technologies that are a result of a private
firm'’s relationships with science agencies become more en-
abling than technologies from relationships with mission agencies.

Method

Sample and Data Sources

The data set is the full population of U.S. patented
technologies assigned to private firms between 1982
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and 2002. We begin the sample in 1982. This allows
sufficient time for the Federal Grant and Cooperative
Agreement Act (U.S. Congress 1977) that established
the three standard public-private R&D relationship
types (grants, cooperative agreements, and contracts)
to become institutionalized. We end the sample in
2002 to allow sufficient time for patent outcomes to be
well understood. The final sample is 1,862,045 private-
firm assigned patented technologies, 33,130 of which
were the result of a public—private R&D relationship.

We chose to analyze patented technologies because
they provide a useful, perhaps best, representation of
private firms’ technical problem-solving efforts over
time (Jaffe and Trajtenberg 2002, Katila and Ahuja
2002). Patents by definition are both a detailed de-
scription of a complex technical problem and a so-
lution to that problem (Walker 1995) and must be
nontrivial, original, and useful, making them a par-
ticularly appropriate data source.

We focus on patents granted by the U.S. Patent and
Trademark Office (USPTO), compiled by the USP-
TO’s PatentsView.org. We use the complete database.
These data were further cross-referenced with Goo-
gle’s Patent Search. Google’s Patent Search was used
to specifically rectify the missing dates from less
than 1% of the PatentsView data. By combining
PatentsView and Google Patent Search data sets, the
final data set includes the full population of patents
and patent citations over the 30-year span, con-
taining 4,218,252 unique patents. To focus on pri-
vate firms, we further removed 1,100,000 patents
that had no assignee (i.e., patented by an individu-
al and not an organization) or were assigned to pub-
lic organizations."?

We use the federal interest statement in patent
documents to distinguish private-firm-only efforts
from those with public partners. We supplement the
USPTO data with federal contract information from
USASpend.gov and cross-referenced with Google’s
Patent Search. Firms that file a patent in the United
States are legally obligated to file a federal interest
statement that outlines whether the patent was a
result of a public—private relationship. “The con-
tractor or grantee. .. in applying for a patent... must
add a government interest statement that discloses the
government’s rights to the invention” (GAO/RCED-
99-242 Federally Sponsored Inventions, 1999, p. 4).

The federal interest statement also contains other
details about the relationship, including relationship
type and partner agency. Rai and Sampat (2013) find
that the federal interest statements in patents are a
much more accurate data source than the records
maintained by the government itself (e.g., iEdison).
They further note that organizations are much more
likely than individuals to comply with the requirement
to note federal interest, therefore making the data source

appropriate for our data on firms. Corredoira et al.
(2018) further review court cases that show that
underreporting of government sponsorship under-
mines the inventor’s legitimacy of ownership interest
in patent infringement cases involving third parties,
disincentivizing hiding government interest in a patent.
Failure to properly report federal funding in patent
documents may lead to a forfeit of the patent title to
the government or withholding of additional grant
funds (Corredoira et al. 2018), thus further corroborating
the use of the federal interest statement as our
data source.

Statistical Methods

We use a quasi-experiment to test the association of
enabling technologies and public—private R&D rela-
tionships. A critical challenge in the comparison of
private-only and public—private technologies is se-
lection bias. An ideal approach would be to conduct
an experiment by randomly assigning problems for
different types of organizations and their partners to
solve. As a result, selection bias would be eliminated.
Unfortunately, a grand experiment of this kind is
unavailable. We therefore rely on a three-step process
to construct quasi-experimental conditions.

Step 1: Propensity score matching with machine learning.
Matching to find comparable treated and control
groups is particularly important for a study on public-
private relationships for several reasons. First, public
partners may target research areas with the most
potential for enabling innovation, which could lead
to a correlation between public relationships and
enabling technology (patent) outcomes even if public
relationships were unproductive. Similarly, the complex
problems solved by public-private relationships could
be inherently different from the problems solved by
many private firms acting on their own and could
again significantly bias the results. Matching methods
attempt to address this selection bias by controlling
for these preexisting differences across treated and
control groups (Stuart and Rubin 2008) by identifying
subsamples that are balanced with respect to ob-
served covariates.

Coarsened exact matching (CEM) and propensity-
score matching (PSM) help address endogeneity con-
cerns by matching treated (public—private) and control
(private-firm-only) groups on all potentially observ-
able confounding covariates (Rosenbaum and Rubin
1983, Stuart and Rubin 2008). To implement PSM,
researchers typically subjectively select a set of po-
tentially confounding covariates. Next, they use the
set of confounding covariates (technology class, ap-
plication year, and grant year of patents constitute the
standard set of covariates used in patent studies; Jaffe
et al. 1993, Trajtenberg et al. 1997) to generate each
patent’s probability of being selected into treatment,
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that is, propensity score, often using logistic regres-
sion, and match patents in the treatment and control
groups with similar scores. Recent research has pointed
out, however, that relying on a limited set of covariates
leaves researchers unable to adequately control for se-
lection bias (Hamilton and Nickerson 2003, Antonakis
et al. 2010).

In response, we expand the confounding variable
set used for matching significantly. Specifically, we
use geographic location, number of inventors, and
number of patent examiners in addition to the three
standard covariates mentioned previously (technology
class, application year, and grant year) and their
interactions.'” Given the expanded set of confound-
ing covariates, however, traditional PSM methods
break down.'* Additionally, a large number cova-
riates increases the likelihood of overfitting, which can
increase bias (Caliendo and Kopeinig 2008). Over-
fitting can be particularly damaging because relying
on overfit propensity scores can result in inflated
standard errors, that is, lack of precision (Schuster
et al. 2016), over- or underestimation of the second-
stage effects (Cepeda et al. 2003), or “paradoxical
associations” (i.e., significance in the wrong direction;
Concato et al. 1996, p. 1373).

In response, we implement a hybrid machine learning
(ML)-PSM approach. Specifically, our ML-PSM method
incorporates three tenants of supervised machine
learning to overcome limitations. First, advanced sto-
chastic optimization overcomes intractability by exploit-
ing online optimization, allowing us to include a much
larger pool of potentially confounding dimensions.
Second, regularization and cross-validation enable us
to avoid overfitting. Regularization reweights uncon-
founding covariates (i.e., those that do not influence
selection) to zero and therefore removes them from the
regression. Cross-validation splits the sample between
training, validation, and test sets, using the split sample
to tune the regularization and model parameters such
that the most accurate predictions can be generated.
Combining these approaches, we substitute traditional
logistic regression for a supervised machine learning
approach to calculate patent propensity scores.

Next, we construct a subset of control patents with
sufficiently high propensity scores (the matching sam-
ple) such that they resemble the patents that were the
outcomes of public—private relationships, except for
receiving the treatment. To determine which pro-
pensity scores were high enough for inclusion in the
matching sample, we used a global optimum nearest-
neighbor matching algorithm, matching one to one
without replacement. Given that there were more
than three million control patents to choose from, a
fully matched sample can be generated (i.e., each
treated patent is matched with a control). Robustness

checks on various caliper'® matching distances were
run, per standard practice. The fully matched sample
includes 66,260 patents, 33,130 of which are the result
of a public—private relationship.

Step 2: Matched samples. We then analyzed the ef-
fectiveness of the matching. The effectiveness of the
methodology to generate like distributions of tech-
nologies for treated (public—private relationship) ver-
sus control (private-firm-only) groups is illustrated
using propensity score distribution overlap in logit
form. Prematch, nearly two-thirds of the control group
are not matched by the treatment group. Postmatch, the
distributions are almost identical. Further evidence of
balance across treatment and control groups is found
using distributional difference in covariates pre- versus
postmatch (figures available from the authors).

Step 3: Regression models. Using the matched sam-
ple, we then used ordinary least squares (OLS) and
negative binomial regressions to analyze the impact
of relationships and partner agencies on enabling
technology trajectories. We included fixed effects for
application year, location, and technology. Because U.S.
patent technology categories were updated across all
year groups at the same time, technology remains
constant within time, and year-technology interaction
effects are unnecessary.

Measures
Dependent Variable: Enabling Technology. We mea-
sured enabling technology by a continuous index (ETI),
operationalizing three components of enabling tech-
nology (pervasiveness, novelty, and complementary in-
novations) using patent data as described below.
Pervasiveness, that is, how widespread the tech-
nology becomes across multiple domains, is measured
by the breadth of technical fields in which the focal
patent is subsequently cited. Three-digit U.S. patent
classes are used to measure technical fields. Citations
within 15 years of the patent’s grant date are used.
Breadth of technical fields is measured using a Her-
findahl index that ranges from zero to one (Trajtenberg
et al. 1997). The greater the breadth, the more wide-
spread is the impact of the focal technology.
Novelty (i.e., the ability to be improved upon over
time)'® is measured by the breadth of technical fields
of backward citations (backward citations are the
patents that are cited in the focal patent). Although
many measures of novelty exist (Verhoeven et al. 2016),
we use the well-accepted approach of Trajtenberg
et al. (1997) and measure novelty by the breadth of
knowledge that is cited by the focal patent. Novelty is
calculated using a Herfindahl index and ranges from
zero to one, with a score of one indicating maximum
novelty. Again, technical fields are operationalized
using three-digit U.S. patent classes.
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Complementarity is measured by the ratio of for-
ward citations (citing patents) that uniquely cite the
originating patent and not its predecessors (Funk and
Owen-Smith 2017). By using the local network prop-
erties of the focal patent, the complementarity measure
captures the change in citation patterns of future tech-
nologies given the introduction of the focal patent.'” If
the focal patent becomes the sole patent cited by fu-
ture technologies, then the technology is completely
unique in supporting complementary innovations and
receives a score of 1, whereas, in contrast, if the citation
patterns are reinforced, and all new technologies cite
both the focal patent and its predecessors, then the
technology is seen as consolidating and receives a score
of —1. We calculate the index of unique complementarity
at 15 years after the patent’s grant date. Larger values
indicate greater levels of unique complementarity.

The index, i.e. ETI is calculated by loading each factor
(pervasiveness, novelty, and complementarity) onto a
single factor using factor analysis (varimax with oblique
rotation, eigenvalue > 1, Cronbach’s alpha > 0.7). For
each patent, the resulting ETI is mean centered at zero.

In order to construct the index, patents that did not
receive any forward citations were excluded. To in-
corporate these patents in the analysis and to provide a
comparison with a simple count-based measure of the
general importance of the technology, we coded an al-
ternate outcome variable, Citation-Weighted Patents—an
often-used indicator of technology importance (Katila
and Mang 2003). Patent classification and year fixed
effects normalize this measure. We discuss the re-
sults using this alternative (Importance of Technology)
as an outcome variable in robustness.

To take into account patents that receive no cita-
tions, we also ran a two-step Heckman analysis that
attempts to take into account treatment effects (i.e.,
particular government relations could fly under the
radar or, in contrast, be particularly widely dissem-
inated, possibly influencing whether a particular
invention is subsequently cited; Gross 2019). Results
were consistent. Because OLS performs better than
the Heckman method when it is challenging to find a
valid exclusion restriction (Wolfolds and Siegel 2019),
we report OLS as the main analysis.

Independent Variables

As noted previously, we use the mandatory federal
interest statement in private firms’ U.S. patents to
code whether a public—private relationship underlies a
technology (Selsky and Parker 2005, Flammer 2018,
Bruce et al. 2019). We define a public-private rela-
tionship to exist for a patented invention if a federal in-
terest statement is included in the patent document, in-
dicating that a tie between a public agency and a for-profit
firm existed to exchange resources (e.g., financial,
infrastructure, or research support) and to create a

mutually desired R&D outcome (i.e. the patented
technology).

We use the details provided in the federal interest
statement to distinguish between three types of public—
private relationships. Grant is a binary variable that
takes a value of one if the patented technology was the
result of a grant-based relationship. Contract is a bi-
nary variable that takes a value of one if the tech-
nology was the result of a procurement contract.
Agreement is a binary variable that takes a value of one
if the technology was the result of a cooperative
agreement (U.S. Congress 1977).

We use the details provided in the federal interest
statement to distinguish between two types of agency
partners. Mission Agency is a binary variable that
takes a value of one if the patented technology was a
result of a relationship with the DOD (36% of public—
private relationships in the original data) or NASA
(8%). Science Agency is a binary variable that takes a
value of one if the patented technology was a result
of a relationship with the NIH (23%), NSF (10%), or
NIST (0.5%). The remaining category is Other, that is,
hybrid agencies that often share both science and
mission goals (e.g., Department of Energy, 1.8%;
Department of Agriculture, 0.4%).

Controls

We control for the number of backward citations in
each patent because fewer citations may indicate less
crowded (and less mature) fields with more room for
enabling innovation (Scotchmer 2004). We control
for the number of inventors measured by the count of
the total number of inventors listed on the patent
application. Larger teams working on a patentable
technology likely have a larger network with which to
share the innovation and more significant access to
additional resources, such as knowledge and funding
(Jaffeetal. 1993), thus suggesting a potential influence
on the enabling nature of the technology.

We control for the geographic location because local
infrastructure, cultural differences, and proximity to in-
ventor networks can influence knowledge spillovers
and propensity to cite (Jaffe et al. 1993). Location is
defined by the categorical variables State and Country
at the time of invention. We control for the three-digit
U.S. patent technology class for each patented inven-
tion using dummy variables to take into account dif-
ferences in technology fields, including the propen-
sity to cite, build patent thickets, and protect intellectual
property (Mansfield 1986). There are 496 technology
classes in the data.

We include fixed effects for patent application year
to control for technology-sector dynamism and tools
and technologies available for subsequent innova-
tors. We also control for time to grant, measured by
the number of years from filing to grant of a patent,
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Table 3. Descriptives and Correlations

Variable Mean Standard deviation 1 2 3 4 5 6 7 8 9 10
1 Enabling Technology Index 0.11 0.94
2 Public-Private Relationship 0.50 0.50 0.02
3 Contract 0.25 0.43 0.0003  0.58
4 Agreement 0.01 0.11 0.01 0.11 -0.03
5 Grant 0.13 0.34 0.04 0.38 -0.15 -0.01
6 Mission Agency 0.13 0.34 0.01 039 052 0.04 -0.03
7 Science Agency 0.09 0.29 0.03 031 -0.09 0.04 061 -0.12
8 Time to Grant 2.61 1.54 010 -0.05 -0.07 0.02 0.2 -0.03 0.11
9 Patent Age 19.81 8.21 -0.13 026 019 -0.03 -0.03 0.13 -0.05 -0.39
10 Number of Inventors 2.45 1.65 0.05 0.01 0.01 0.05 0.08 0.00 0.06 015 -0.24
11 Number of Backward Citations (logged) 1.77 1.09 004 016 -0.06 0.04 -0.03 -0.04 -0.04 020 -045 0.14
to account for time-variant changes in the USPTO, Table 5 includes the analyses by public agency

such as changes in the examination processes or possibly
even the underlying complexity of the patented tech-
nology not controlled for otherwise, which may affect
enabling innovation. We also control for patent age,
measured by the number of years since a patent
was granted.

Results

Table 3 includes descriptive statistics and correla-
tions. Table 4 presents the high-level associations of
Enabling Technology and Public—Private Relationships.
Private-only is the omitted category. Samples before
matching (models 1 and 2) and after ML-PSM matching
(models 3 and 4) are reported for comparison. Models 2
and 4 both indicate that public—private relationships
are associated with technologies that start a more
enabling trajectory in comparison with the private
firms” efforts alone, supporting Hypothesis 1.

(models 1-3) to test Hypothesis 2. Consistent with
Table 4, the results show that public-private rela-
tionships have greater associations with enabling
technology trajectories of technologies than private
firms acting on their own, again supporting Hypothesis 1.
However, we do not find support for Hypothesis 2,
which predicted that science agencies as partners
would result in more enabling technology trajectories
than mission agencies. In fact, we find the opposite. In
model 3, mission agency relationships relate to slightly
more (not less) enabling technology than science agencies,
thus contradicting Hypothesis 2.

Given the unexpected results regarding Hypothesis 2,
Tables 6 and 7 further split the analysis by agency,
respectively, to examine the possible differences across
contracts, grants, and cooperative agreements within
each agency relationship. Model 2 in both tables confirm
that both science and mission agency relationships
have a positive association with enabling technology

Table 4. Ordinary Least Squares Predicting Enabling Technology: Using Prematch vs.

Postmatch Samples

Dependent variable: Enabling Technology Index

Prematch Postmatch
Variable 1 ) (3) 4)
Public—Private Relationship 0.113*** 0.103***
(0.102, 0.123) (0.088,0.117)
Time to Grant 0.037*** 0.036*** 0.015 0.013
(0.032, 0.041) (0.031, 0.041) (-0.009, 0.039)  (-0.011, 0.037)
Patent Age —0.012*** —0.012%** -0.019 -0.021
(-0.016, —0.007) ~ (-0.017, -0.007)  (-0.043, 0.004)  (-0.044, 0.002)
Number of Inventors 0.003*** 0.002#** 0.003 0.002
(0.002, 0.004) (0.002, 0.003) (-0.001, 0.008)  (-0.003, 0.013)
Intercept —2.586%** —2.548** 0.245 0.310
(—4.195,-0.978) (-4.156, —0.940)  (—2.943,3.432)  (-2.873, 3.493)
R? 0.165 0.166 0.163 0.166
Adjusted R* 0.165 0.165 0.156 0.159
Observations 1,862,045 1,862,045 66,260 66,260

Note. Fixed effects for application year, location, and technology class are included in all models.

*p < 0.05; **p < 0.01; **p < 0.001.
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Table 5. Ordinary Least Squares Predicting Enabling Technology: Split by Agency

Dependent Variable: Enabling Technology Index

Variable 1) 2) 4)
Intercept 3.457% 3.565% 3.581%

(-0.397, 7.311) (-0.283, 7.414) (-0.269, 7.430)
Public—Private Relationship 0.102***

(0.081, 0.124)
Mission Agency 0.104***
(0.079, 0.129)

Science Agency 0.101%**

Time to Grant (years)

Patent Age (years)

Number of Inventors

Number of Backward Citations (logged)

R2
Adjusted R*
Observations

(0.070, 0.132)

-0.010 -0.013 -0.013
(~0.045, 0.026) (~0.049, 0.022) (~0.049, 0.022)
—0.051%** -0.052% -0.052%

(~0.086, —0.016)

0.002
(~0.004, 0.009)

(~0.087, —0.017)

0.0004
(~0.006, 0.007)

(~0.087, —0.017)

0.0004
(~0.006, 0.007)

~0.039** —0.0374% —0.0374%
(~0.050, —0.029) (~0.047, —0.026) (~0.047, —0.026)
0.171 0.173 0.173
0.156 0.159 0.159
28,860 28,860 28,860

Note. Fixed effects for application year, location, and technology class are included in all models.

*p < 0.05; **p < 0.01; **p < 0.001.

trajectories when private-firm-only efforts are the base-
line. However, model 6 shows that cooperative agree-
ments with mission agencies have the strongest positive
association with enabling technology (Table 7). Grants
in science agencies also have positive but relatively
weaker effects (Table 6). Thus, particular types of
relationships with mission agencies are likely starting
points for enabling technology trajectory, which could
explain why we find that mission agencies rather than
science agencies are more likely to spawn more enabling
technologies (i.e., the unexpected results regarding
Hypothesis 2). We return to this intriguing finding in
the discussion.

Robustness Tests
We ran several robustness tests to increase confi-
dence in our findings. We first bolstered confidence in
our dependent variable measure. Prior work argues
that the more enabling the technology, the less likely
are the private firms to capture value (Teece 2018a;
Chesbrough and Appleyard 2007). We thus expected
our dependent variable, that is, Enabling Technology
Index, to have a negative relation with value capture.
This expectation is strongly confirmed. Using knowl-
edge spillover reabsorption (Belenzon 2012) to measure
value capture, we find a negative relation that in-
creases confidence in our dependent variable mea-
sure. These results are available from the authors.
We then used an alternate dependent variable, that
is, Importance of Technology, measured by the sheer

number of forward citations, to show that our original
dependent variable, thatis, Enabling Technology Index,
is a distinctively different construct. As a dependent
variable, Importance of Technology captures knowledge
impact that is distinct from enabling technology impact.
Using Importance of Technology as the dependent vari-
able (i.e., citations made to the focal patent by subsequent
patents, both with and without self-cites), the results differ
from our original results, as expected. Grants and sci-
ence agencies now have the largest positive coefficients,
reflecting that they spawn important knowledge cap-
tured by the forward citation counts. Altogether, these
alternative tests indicate that our dependent variable,
that is, Enabling Technology Index, indeed captures a
distinctively different trajectory of a technology than
other measures.

Discussion

Despite the rise of interest in enabling technologies
such as Al, our understanding of the role of private
firms in developing enabling technologies is limited.
We started this paper with the question of how en-
abling are the technologies developed by private
firms with and without public-sector partners. Using
machine learning matching, we compared technolo-
gies generated from more than 30,000 public-private
relationships with comparable technologies invented
by private firms alone during a 21-year period. Our
results shed light on this important strategic option
for firms.
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First, our results help unpack the enabling tech-
nology trajectories of inventions created by private
firms. The findings show that technologies that are a
result of private firms’ relationships with the public
sector—in particular cooperative agreements with
mission agencies (e.g.,, NASA, DOD)—have a stronger
association with enabling technology trajectories than
private firms’ efforts alone. Interestingly, contracts—
which agency theory traditionally considers the most
effective—have weaker effects.

The new ETI that we introduce to measure enabling
technology helps us quantify a firm’s strategic decisions
about enabling technology. Overall, firms are involved
in enabling technologies in unexpectedly many ways,
warranting a study on this increasingly important
option for strategists.

Our findings also challenge two assumptions widely
held about enabling technologies. The first assumption is
that enabling technologies have their origins only in the
public sector. The second assumption is that enabling
technologies originate with science agencies. Our find-
ings challenge both assumptions.

First, as noted previously, we find that private firms
have an important role in enabling technology crea-
tion. Second, we contradict the belief that mission
rather than science agencies may not adequately
support the development of enabling technologies in
private firms but rather support narrow exploitation
(Christensen et al. 2018). Our results indicate a more
nuanced interpretation. Mission agencies have the
strongest overall effect when collaborative agree-
ments are used. It seems that when the relationship
type (agreement) with mission agencies affords more
latitude and joint work, private firms’ technology is
sent into an enabling technology trajectory. Joint peer
relationships with mission agency partners may be
particularly important because they likely give a
firm a better understanding of the customer’s unique
and specialized demands—demands that may not
easily be summarized in public communications from
the government, such as the statement of objectives
(for contracts). This reduced information asymmetry
inherent in agreements thus may enable customer
relations with the mission agency instead of falling
into a “valley of death.” Overall, these results suggest
that a balance of exploratory and exploitative com-
ponents in a relationship may be most beneficial.

A third unexpected result was that we did not find
contracts to be particularly helpful for enabling tech-
nology trajectories. One reason may be that relationships
between private firms and the public sector that are
organized through contracts have a prespecified format
that often involves formal channels of communica-
tion between public and private researchers in order
to cement access and insight into the firm’s R&D
process. Contracts thus may be effective for generating

prespecified types of knowledge tailored to the rela-
tionship but less helpful for enabling technologies that
gain widespread use. The norms of interaction are in-
stantiated by public agencies primarily to reduce the risk
(agency costs) in the investment. This structured inter-
action would explain the limited positive impact of
contracts on more high-impact enabling technology.
For example, in contracts, public and private researchers
are assigned roles that force them to collaborate through-
out the R&D process toward a specific procurement
need. In other words, the public partner controls the
R&D process for a specific procurement purpose, and
the technology developed is possibly then less likely
to be targeted for widespread use. The constrained
R&D process inherent in contracts will also most likely
result in less novel technologies than if less restrictive
types of relationships were used. This may be true even if
the firm had proposed to develop a more novel tech-
nology in its response to solicitation, given the restricted
freedom inherent in the structure of the contract rela-
tionship, again explaining the more limited impact of
contracts on enabling technologies.

The findings are significant for public policy be-
cause they add to the evidence (Bloom et al. 2019) that
targeted government relations with private firms can
support enabling technologies. We particularly find
the positive role of public-private relationships that
generate technologies that become enabling for subse-
quent inventions in many sectors. If the goal of policy is
to support private-firm innovation that generates spill-
overs that enable growth across sectors, we have iden-
tified that particular government research relations
with private firms (e.g., grants, cooperative agree-
ments, particularly with mission agencies) are aligned
with this goal.

Our results also add to the evidence about how to
build technology ecosystems. We find that firms and
their government collaborators can seed ecosystems
with technologies that enable subsequent innovation
by ecosystem participants and so shape how ecosystems
evolve. More broadly, the results point in the direction
that private firms, together with public partners, can be
important in the creation of technology ecosystems.

As with all research, these findings should be
interpreted with the usual caution and, as such, open
up several intriguing opportunities for future work.
Although we focused on patented technologies, one
possibility is, as Murray (2010) noted, that projects
with a science focus would have a lower propensity to
patent in the first place. If this propensity would be
particularly likely, for example, in grant and science
agency relationships, it could potentially underesti-
mate the grants’ impact on enabling technologies if
the projects that are missing would be of high en-
abling technology potential. Because we find a pos-
itive relationship between grants and science agencies
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with our data, this type of missing data would be un-
likely to qualitatively change our interpretation of the
findings. However, if we are missing the least promising
projects, that is, the low end of the distribution, because
they are not patented and therefore overestimate, our
findings could be affected. There is, however, no clear
theoretical reasoning why grantees would be likely to
not patent projects with low enabling technology value
(one would actually expect the opposite because en-
abling technologies are difficult to capture value from).
Nevertheless, these issues at the intersection of public
policy and private-firm R&D present several inter-
esting opportunities for follow-up work.

Finally, we also provide a methodological contri-
bution by introducing a novel ML-PSM method.
Extending the work that applies machine learning in
strategy and economics (Illari et al. 2011, Athey and
Imbens 2015), we used a new inference strategy that
applies machine learning to matching. The machine
learning techniques applied in this paper allow scholars
to simultaneously increase efficiency and avoid over-
fitting, minimizing the potential for selection bias.
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Endnotes

! General-purpose technologies (Bresnahan and Trajtenberg 1995)
are defined as a high-end subset of enabling technologies, that is,
technologies that rise to have substantive cumulative economy-
wide impact.

2We use the definition of mission agencies of Ergas (1987) as agencies
with the goal of achieving programmatic, practical goals. Science
agencies, in contrast, focus on scientific goals.

® Prior research often ties partner agency to relationship type, but this
is not necessarily accurate. For example, in our data, mission agencies
are involved in contracts and agreements in approximately 80% and
in grants in approximately 20% of cases, whereas in science agencies
the numbers are reversed.

*R&D tax credits are typically broad spectrum, whereas loans are
more targeted. For example, the U.S. Federal R&D Tax Credit
Program on R&D expenditures covers up to 14% of any corporate
expenditures on R&D. In contrast, federal loan programs are
instituted by specific government sponsors to support specific
areas of interest. For example, the U.S. Clean Energy Loan Pro-
gram guarantees 2% loans for B-rated firms, with loans as low as
0.375% for AAA-rated firms. The loans are granted only to firms
that apply the loaned capital in the development of innovative
technologies that meet the requirements as set by the pub-
lic agency.

® The National Science Board (NSB) reported that more than 60% of
U.S. R&D spending is allocated to public—private R&D relationships
(UNESCO 2016, NSB 2018).

® For example, in the interviews of Pahnke et al. (2015, p. 608), an NIH
informant stated, “We are spending billions of dollars on projects—
what are they producing? They produce knowledge. We fund in-
quiry. Following up after funding would question and undermine the
whole system.”

"Government agencies often switch between cost-plus, incentive-
based, and fixed-price contracts depending on the level of techni-
cal maturity presumed in the procured end item (Ng et al. 2009). Cost-
plus contracts are associated with the least mature technologies,
whereas fixed-price contracts are tied with the most mature products.

8Other relationships that are similar to cooperative agreements
but are used more sparingly include research consortia [Sem-
atech in the United States, the Consortium R&D Project for Regional
Revitalization in Japan], innovation grand challenges, and NASA’s
crowdsourcing platforms (Lifshitz-Assaf 2017).

®The concept of capable of ongoing improvement (Bresnahan and
Trajtenberg 1995) is also frequently used. We use novelty, given its
widespread use and conceptualization in the R&D literature.

LIDAR was used primarily in scientific experiments until the late
1980s, with the exception of military operations. The first recorded
use of LIDAR in the military was in 1972 (Neff 2018).

""Macroanalysis shows that social returns from enabling tech-
nologies are two to seven times greater than private returns
(Lichtenberg 1992, Hall et al. 2010). Similarly, research finds that
licensing models almost always undervalue enabling technol-
ogy, thus leaving much of the value with other firms (e.g., sup-
pliers, manufacturers, competitors; Arrow 2012). One way in which
knowledge leaves firms is negative knowledge spillover, in which
the same collaborative R&D that leads to enabling technology de-
velopment may transfer tacit knowledge external to the organiza-
tion, bleeding the firm of future rents.

2 The authors thank an anonymous reviewer who noted that the
focus of the data naturally limits the generalizability of the findings to
private-firm inventions. Future work could expand to compare with
inventions that are a result of intramural efforts of the federal gov-
ernment. Although patented inventions are important to examine in
their own right, future work could also expand the analysis to in-
ventions that are not patented.

'3 Patent examiners in particular are an important covariate to include
in the matching process. Patent examiners are coded as a discrete
variable at each patent examiner name (first_last). Patent examiners
are responsible for reviewing patent applications and adding pat-
ent citations when necessary. Examiners are considered potentially
confounding variables because (a) they are assigned to evaluate
specific technologies for which they have unique expertise (Righi and
Simcoe 2019) and (b) they vary greatly in their propensity to add
patent citations. Because patent examiners therefore may be seen as
highly correlated with both treatment and outcome, they are in-
cluded. There are 26,698 patent examiners and 496 technology classes
in the data.

"The absorb command in Stata is an example of a computational
trick that makes regressions computationally manageable with a
large number of dummy variables (Athey and Stern 2002). However,
the advance of machine learning methods is particularly useful to
identify potentially significant interactions that may be confounding
(e.g., potential interdependency of patent examiners, technology
class, and team size). Thank you to an anonymous reviewer for
pushing us to clarify this.

'8 Caliper distances are defined as the maximum radius under which
two variables are considered a good match. For our strictest test, we
use 0.02 multiplied by one standard deviation of the distribution of all
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matching distances (Austin 2011) because matching with additional
neighbors may increase the bias given that additional neighbors will
necessarily be worse matches.

'8 Trajtenberg et al. (1997) use the labels of generality and originality,

respectively, for pervasiveness and novelty.

—2fitbit+Hit
Wit

"We define UniqueComplementarity = ,}—f p ,wi>0 where 1,

is the number of forward citations of both the focal patent and its
predecessors, f; is one if a new patent cites the focal patent, by is one
if a new patent cites the focal patent’s predecessors, and wj is an
optional weighting parameter that indexes a matrix W of weights
for the focal patent i at time t. For simplicity, in our analysis, w;; = 1.
See Funk and Owen-Smith (2017).
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