Spark Streaming

Tathagata “TD” Das
Whoami

• Core committer on Apache Spark
• Lead developer on Spark Streaming
• On leave from PhD program in UC Berkeley
Big Data
Big Streaming Data
Big *Streaming* Data Processing

Fraud detection in bank transactions

Anomalies in sensor data

Cat videos in tweets
How to Process Big Streaming Data

Distributed Processing System

- Scales to hundreds of nodes
- Achieves low latency
- Efficiently recover from failures
- Integrates with batch and interactive processing
What people have been doing?

> Build two stacks – one for batch, one for streaming
 - Often both process same data

> Existing frameworks cannot do both
 - Either, stream processing of 100s of MB/s with low latency
 - Or, batch processing of TBs of data with high latency

> Extremely painful to maintain two stacks
 - Different programming models
 - Doubles implementation effort
 - Doubles operational effort
Fault-tolerant Stream Processing

> Traditional processing model
 - Pipeline of nodes
 - Each node maintains mutable state
 - Each input record updates the state and new records are sent out

> Mutable state is lost if node fails

> Making stateful stream processing fault-tolerant is challenging!
Existing Streaming Systems

> Storm
 - Replays record if not processed by a node
 - Processes each record \textit{at least once}
 - May update mutable state twice!
 - Mutable state can be lost due to failure!

> Trident – Use transactions to update state
 - Processes each record \textit{exactly once}
 - Per-state transaction to external database is slow
What is Spark Streaming?

> Receive data streams from input sources, process them in a cluster, push out to databases/dashboards

> Scalable, fault-tolerant, second-scale latencies
How does Spark Streaming work?

> Chop up data streams into batches of few secs
> Spark treats each batch of data as RDDs and processes them using RDD operations
> Processed results are pushed out in batches
Spark Streaming Programming Model

> Discretized Stream (DStream)
 - Represents a stream of data
 - Implemented as a sequence of RDDs

> DStreams API very similar to RDD API
 - Functional APIs in Scala, Java
 - Create input DStreams from different sources
 - Apply parallel operations
Example – Get hashtags from Twitter

```scala
val ssc = new StreamingContext(sparkContext, Seconds(1))
val tweets = TwitterUtils.createStream(ssc, auth)
```

Input DStream

Twitter Streaming API

- batch @ t
- batch @ t+1
- batch @ t+2

tweets DStream

- stored in memory as RDDs
Example – Get hashtags from Twitter

```scala
val tweets = TwitterUtils.createStream(ssc, None)
val hashTags = tweets.flatMap(status => getTags(status))
```

transformation: modify data in one DStream to create another DStream

tweets DStream

flatMap

hashTags Dstream

[#cat, #dog, ...]

new RDDs created for every batch
Example – Get hashtags from Twitter

```scala
val tweets = TwitterUtils.createStream(ssc, None)
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")
```

output operation: to push data to external storage

tweets DStream

hashTags DStream

every batch saved to HDFS
Example – Get hashtags from Twitter

```scala
val tweets = TwitterUtils.createStream(ssc, None)
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.foreachRDD(hashTagRDD => {
    ... })
```

foreach: do whatever you want with the processed data

```
tweets DStream
    batch @ t
    flatMap
    foreach

hashTags DStream
    batch @ t+1
    flatMap
    foreach
    batch @ t+2
    flatMap
    foreach

Write to a database, update analytics UI, do whatever you want
```
Languages

Scala API
val tweets = TwitterUtils.createStream(ssc, auth)
val hashTags = tweets.flatMap(status => getTags(status))
hashTags.saveAsHadoopFiles("hdfs://...")

Java API
JavaDStream<Status> tweets = ssc.twitterStream()
JavaDstream<String> hashTags = tweets.flatMap(new Function<...> { })
hashTags.saveAsHadoopFiles("hdfs://...")

Python API
...soon
Window-based Transformations

val tweets = TwitterUtils.createStream(ssc, auth)
val hashTags = tweets.flatMap(status => getTags(status))
val tagCounts = hashTags.window(Minutes(1), Seconds(5)).countByValue()
Arbitrary Stateful Computations

Specify function to generate new state based on previous state and new data

- Example: Maintain per-user mood as state, and update it with their tweets

```python
def updateMood(newTweets, lastMood) => newMood

val moods = tweetsByUser.updateStateByKey(updateMood _)
```
Arbitrary Combinations of Batch and Streaming Computations

Inter-mix RDD and DStream operations!
- Example: Join incoming tweets with a spam HDFS file to filter out bad tweets

```scala
tweets.transform(tweetsRDD => {
  tweetsRDD.join(spamFile).filter(...)
})
```
DStreams + RDDs = Power

> Combine live data streams with historical data
 - Generate historical data models with Spark, etc.
 - Use data models to process live data stream

> Combine streaming with MLlib, GraphX algos
 - Offline learning, online prediction
 - Online learning and prediction

> Interactively query streaming data using SQL
 - select * from table_from_streaming_data
Advantage of an Unified Stack

> Explore data interactively to identify problems

> Use same code in Spark for processing large logs

> Use similar code in Spark Streaming for realtime processing

```
$ ./spark-shell
scala> val file = sc.hadoopFile("smallLogs")
...
scala> val filtered = file.filter(_.contains("ERROR"))
...
scala> val mapped = filtered.map(...)

object ProcessProductionData {
  def main(args: Array[String]) {
    val sc = new SparkContext(...) 
    val file = sc.hadoopFile("productionLogs")
    val filtered = file.filter(_.contains("ERROR"))
    val mapped = filtered.map(...) 
    ...
  }
}

object ProcessLiveStream {
  def main(args: Array[String]) {
    val sc = new StreamingContext(...) 
    val stream = KafkaUtil.createStream(...) 
    val filtered = stream.filter(_.contains("ERROR"))
    val mapped = filtered.map(...) 
    ...
  }
}
```
Performance

Can process **60M records/sec (6 GB/sec)** on **100 nodes** at **sub-second latency**
Fault-tolerance

> Batches of input data are replicated in memory for fault-tolerance

> Data lost due to worker failure, can be recomputed from replicated input data

> All transformations are fault-tolerant, and exactly-once transformations
Input Sources

• Out of the box, we provide
 – Kafka, Flume, Kinesis, Raw TCP sockets, HDFS, etc.

• Very easy to write a custom receiver
 – Define what to when receiver is started and stopped

• Also, generate your own sequence of RDDs, etc. and push them in as a “stream”
Output Sinks

• HDFS, S3, etc (Hadoop API compatible filesystems)

• Cassandra (using Spark-Cassandra connector)

• Hbase (integrated support coming to Spark soon)

• Directly push the data anywhere
Conclusion

Spark Streaming Programming Guide

- Overview
- A Quick Example
- Basics
 - Linking
 - Initializing
 - DStreams
 - Input Sources
 - Operations
 - Transformations
 - Output Operations
 - Persistence
 - RDD Checkpointing
 - Deployment
 - Monitoring
- Performance Tuning
 - Reducing the Processing Time of each Batch
 - Level of Parallelism in Data Receiving
 - Level of Parallelism in Data Processing
 - Data Serialization
 - Task Launching Overheads
 - Setting the Right Batch Size
 - Memory Tuning
- Fault-tolerance Properties
 - Failure of a Worker Node
 - Failure of the Driver Node
- Migration Guide from 0.9.1 or below to 1.x
- Where to Go from Here

Overview

Spark Streaming is an extension of the core Spark API that allows for high-throughput, fault-tolerant stream processing of live data streams. Data can be ingested from many sources like Kafka, Flume, Twitter, ZeroMQ or plain old TCP sockets and be processed using complex algorithms expressed with high-level functions like map, reduce, join and window. Finally, processed data can be pushed out to filesystems, databases, and live dashboards. In fact, you can apply Spark's in-built machine learning algorithms, and graph processing algorithms on data streams.