Spark and Matrix Factorization

Heza Zaden € databricks

{ICME 3

INSTITUTE for COMPUTATIONAL &

MATHEMATICAL ENGINEERING S QrK
at STANFORD UNIVERSITY



Problem

Data growing faster than processing speeds

Only solution is to parallelize on large clusters
» \Wide use in both enterprises and web industry




Traditional Network Programming

Message-passing between nodes (e.g. MPI)

Very difficult to do at scale:
» How to split problem across nodes”?
* Must consider network & data locality
» How to deal with failures? (inevitable at scale)
» Even worse: stragglers (node not failed, but slow)
» Ethernet networking not fast
» Have to write programs for each machine

Rarely used in commodity datacenters




Spark Computing Engine

Extends a programming language with a

distributed collection data-structure
» “Resilient distributed datasets” (RDD)

Open source at Apache
» Most active community in big data, with 50+
companies contributing

Clean APIs in Java, Scala, Python, R



Key ldea

Resilient Distributed Datasets (RDDs)
» Collections of objects across a cluster with user
controlled partitioning & storage (memory, disk, ...)
» Built via parallel transformations (map, filter, ...)
» The world only lets you make make RDDs such that
they can be:

Automatically rebuilt on failure



A General Platform

Standard libraries included with Spark

Spark MLIib
Streaming machine
real-time learning

Spark SQL

structured

Spark Core




Benefit of iterations: Optimization



Optimization

At least two large classes of optimization
problems humans can solve:

- Convex Programs

- Spectral Problems (SVD)



Deep Dive: Singular Value Decomposition



Singular Value

Decomposition

Amxn=

mxk




Singular Value
Decomposition

Two cases: Tall and Skinny vs roughly Square

computeSVD function takes care of which
one to call, so you don’t have to.



Tall and Skinny SVD

@ Given m x n matrix A, with m > n.

@ We compute AT A.
@ ATAis n x n, considerably smaller than A.

e A’ Ais dense.
@ Holds dot products between all pairs of columns of A.

A=UxV" ATA = ve2v?



Tall and Skinny SVD

- _ Getsus V and the
ATA = VXV singular values

Getsus U by one

_ T
A=U%V matrix multiplication



Square SVD via ARPACK

Very mature Fortran/7 package for
computing eigenvalue decompositions

JNI interface available via netlib-java

Distributed using Spark



Square SVD via ARPACK

Only needs to compute matrix vector
multiplies to build Krylov subspaces

K,=[b Ab A% -.. A"

The result of matrix-vector multiply is small

The multiplication can be distributed



All pairs Similarity



All pairs Similarity

All pairs of similarity scores between n vectors

Compute via DIMSUM:

“Dimension Independent Similarity
Computation using MapReduce”

Will be in Spark 1.2 as a method in RowMatrix



All-pairs similarity computation

@ Given m x n matrix A, with m > n.

/31,1 a2 v 31,n\
do1 dop2 '+ donp
A=\ | . .
\am,1 dm2 *°* dmn )

@ Ais tall and skinny, example values m= 102, n = 108
@ A has sparse rows, each row has at most L nonzeros.

@ A s stored across hundreds of machines and cannot
be streamed through a single machine.



INturtion

Sample columns that have many non-zeros with
lower probability.

On the flip side, columns that have fewer non-
zeros are sampled with higher probability.



Spark implementation

// Load and parse the data file.
val rows = sc.textFile(filename).map { line =»>
val values = line.split(’' ').map(_.toDouble)

Vectors.dense(values)

}

val mat = new RowMatrix(rows)

// Compute similar columns perfectly, with brute force.

val simsPerfect = mat.columnSimilarities()

// Compute similar columns with estimation using DIMSUM

val simsEstimate = mat.columnSimilarities(threshold)



Future of MLIIb



General Linear Algebra

CoordinateMatrix
RowMatrix

BlockMatrix

| ocal and distributed versions.
Operations in-between. Goal: version 1.3



Spark and ML

Spark has all its roots in research, so we hope
to keep incorporating new ideas!



