
Factorbird - a Parameter Server Approach to
Distributed Matrix Factorization

Sebastian Schelter∗
Technische Universität Berlin

@sscdotopen

Venu Satuluri
Twitter

@vsatuluri

Reza Bosagh Zadeh
Stanford University
@reza zadeh

Abstract

We present ‘Factorbird’, a prototype of a parameter server approach for factor-
izing large matrices with Stochastic Gradient Descent-based algorithms. We de-
signed Factorbird to meet the following desiderata: (a) scalability to tall and wide
matrices with dozens of billions of non-zeros, (b) extensibility to different kinds
of models and loss functions as long as they can be optimized using Stochastic
Gradient Descent (SGD), and (c) adaptability to both batch and streaming scenar-
ios. Factorbird uses a parameter server in order to scale to models that exceed the
memory of an individual machine, and employs lock-free Hogwild!-style learning
with a special partitioning scheme to drastically reduce conflicting updates. We
also discuss other aspects of the design of our system such as how to efficiently
grid search for hyperparameters at scale. We present experiments of Factorbird
on a matrix built from a subset of Twitter’s interaction graph, consisting of more
than 38 billion non-zeros and about 200 million rows and columns, which is to the
best of our knowledge the largest matrix on which factorization results have been
reported in the literature.

1 Introduction

In recent years, there is a growing trend to apply machine learning (ML) to massive and complex
datasets [1]. For many applications, this leads to growing model sizes. A prime example are rec-
ommender systems where the size of the model is usually proportional to the number of users in
the dataset [2, 9]. In cases with hundreds of millions of users this model exceeds the memory of
an individual machine and distributed approaches to model training that leverage multiple machines
become necessary. This leads to a set of challenges, e.g. how to partition the model among the
participating machines and how to correctly execute learning algorithms in such a setting.
In this work, we describe ’Factorbird’, a prototypical system that leverages a parameter server ar-
chitecture [17] for learning large matrix factorization models for recommendation mining. After a
short introduction to matrix factorization for recommender systems (Sec. 2), we describe the main
challenges of our system, namely how to partition the model among the machines in the cluster and
how to run Stochastic Gradient Descent (SGD) in parallel. We discuss the design decisions taken
in Factorbird to overcome these challenges (Sec. 3). First, we partition one of the matrices to learn
over dedicated machines in the cluster and co-partition the other one with the input data to localize
a large number of updates and drastically reduce update conflicts and network traffic. Next, we
apply a lock-less Hogwild!-style [14] execution scheme to efficiently run SGD in parallel. After
giving insights into our software design and memory-efficient datastructures (Sec. 4), we describe
techniques to assess model quality in Factorbird (Sec. 5). Our approach here is to grid search over
a large number of hyperparameter combinations in a single training run. Finally, we present a set
of experiments on user interaction data from twitter (Sec. 6). We run a scale-out experiment on a
matrix built from a subset of Twitter’s interaction graph [20], with more than 38 billion non-zeros

∗work done while at Twitter

1



and about 200 million rows and columns. To the best of our knowledge, this is largest dataset on
which matrix factorization experiments have been published so far.

2 Background: Latent Factor Models

We build upon latent factor models, which leverage a low-rank matrix factorization of interaction
data [2] to characterize users and items by vectors of factors inferred from interaction patterns.
These methods have been among the top-scoring contributions to the Netflix prize [3]. They factor
a sparse partially-observed m× n matrix M , representing the interactions of m users with n items,
into the product of two rank k factor matrices U and V , such that their product UV approximates
the observed parts of M and generalizes well to unobserved parts of M (c.f. Figure 1). A user i is
associated to a factor vector ui ∈ Rk (a row of the m × k matrix U ), while an item j is associated
to a factor vector vj ∈ Rk (a column of the n × k matrix V ). The factorization maps users and
items onto joint latent factor space of low dimensionality k, such that uTi vj estimates the strength of
interaction between user i and item j.

Figure 1: Latent factor models as matrix factorization problem.

The standard approach to learning a latent factor model for recommender systems is to minimize the
regularized squared error over the predictions to the observed parts of the matrix [2]:

min
U,V

∑
(i,j)∈M

(mij − uTi vj)2 + λ
(
‖ui‖2 + ‖vj‖2

)
This approach is closely related to the Singular Value Decomposition (SVD) of the matrix, which
gives an optimal rank k approximation (w.r.t. to squared error) of the original matrix using the top-k
singular values and singular vectors. The key difference here is that the SVD is undefined when
there are missing entries.
We adopt a more sophisticated approach outlined in [2]. First, we introduce a global bias term g,
which captures the average interaction strength between a user and an item in the dataset. Next, we
introduce a user-specific bias term bUi for user i and an item-specific bias term bias bVj for item j.
These biases model how strongly the interactions of certain users and items tend to deviate from
the global average. We substitute the dot product uTi vj for predicting the strength of the interaction
between a user i and an item j with a prediction function p(i, j) = g+bUi +bVj +uTi vj that takes the
bias terms into account. Furthermore, we introduce a function a(i, j) for determining the strength
of the interaction between user i and item j. This allows us to transform the observed entries mij

of M . Finally, we add a function w(i, j) for weighting the prediction error for interaction between
user i and item j. This function becomes useful when M consists of data from various sources with
differing confidence in the observations. The loss function that we minimize for our latent factor
model in Factorbird is the following:

min
g,bU ,bV ,U,V

1

2

 ∑
i,j∈M

w(i, j)(p(i, j)− a(i, j))2
+

λ

2

(
g2 + ‖bU‖2 + ‖bV ‖2 + ‖U‖2F + ‖V ‖2F

)
We adopt a graph-specific terminology for the rest of the paper as well as for the APIs of our
system, as we think about the majority of Twitter’s datasets in terms of large networks. Therefore,

2



we assume that M represents a network (e.g. the network of user followings in Twitter), i and j
reference vertices in this network (e.g. two users in this network) and the edges of the network
correspond to observed entries of M , meaning that a(i, j) depicts the weight of a directed edge
between a vertex i and a vertex j in this network. Furthermore, we assume that the bias vectors bU
and bV are stored in U and V (e.g., as first column and first row), to simplify notation.

Factorization via Stochastic Gradient Descent (SGD). There are various popular techniques to
compute a matrix factorization. Stochastic Gradient Descent (SGD) [2] randomly loops through
all observed interactions, computes the error of the prediction for each interaction and modifies the
model parameters in the opposite direction of the gradient. Another technique is Alternating Least
Squares (ALS) [8, 16, 9], which repeatedly keeps one of the unknown matrices fixed, so that the
other one can be optimally re-computed. We chose SGD as optimization technique, as it is simple,
provides fast convergence and is easy to adapt to different models and loss functions. Algorithm 1
shows the individual steps to conduct when learning the matrix factorization with SGD. First, we
randomly initialize the factor matrices U and V (c.f. line 1). Next, we randomly pick an edge (i, j)
from the graph and compute the weighted error eij of the prediction p(i, j) against the actual edge
strength a(i, j) (c.f. lines 3 & 4). Next, we update the global bias term as well as the bias terms for
i and j proportional to the prediction error eij , the learning rate η and the regularization constant λ
(c.f. lines 5 to 7). We weight the regularization updates according the out-degree ni of vertex i (the
number of observed entries in the i-th row of M ) and the in-degree nj of j (the number of observed
entries in the j-th column of M ). We update the factor vectors ui and vj analogously (c.f. lines 8 &
9). The whole process is repeated until convergence.

Algorithm 1: Matrix Factorization using SGD.
1 randomly initialize U and V

2
3 while not converged do
4 randomly pick edge (i, j)

5
// compute weighted prediction error

6 eij ← w(i, j)(a(i, j)− p(i, j))
7

// update biases
8 g ← g − η (eij + λg)

9 bUi ← bUi − η
(
eij +

λ
ni
bUi

)
10 bVj ← bVj − η

(
eij +

λ
nj
bVj

)
11

// update factors

12 ui ← ui − η
(
eij vj +

λ
ni
ui

)
13 vj ← vj − η

(
eij ui +

λ
nj
vj

)

3 System Design

Having introduced the conceptual background of the models that we wish to learn, we proceed with
describing the three main design goals of Factorbird.
First, Factorbird must handle factorizations of twitter-scale graphs with hundreds of millions of
vertices and dozens of billions of edges. Scalability to datasets of this size is more important than
high performance on small datasets commonly used in research (such as the Netflix [3] dataset).
The matrices representing these graphs are either square (e.g. user to user followings) or ‘tall-
and-wide’ for bipartite graphs (e.g. user to tweets). Second, the system has to be highly usable
and adaptable for data scientists without making a systems background a necessity. No systems
programming should be required to try out a variation of our model or a different loss function.
Instead, the system should offer interfaces that abstract from the distributed execution model and

3



are intuitive to implement given an ML background. Third, the system design shall be simple to
keep the maintenance and debugging effort low. Additionally, the system design should be easily
extendable into a streaming system in the future, where a previously learned matrix factorization is
updated online given a stream of new observations. This is the main reason why decided against
using ALS, which is much harder to adapt to a streaming scenario than SGD.

Challenges. Running SGD on datasets of such scale inevitably leads to a set of challenges that have
to be overcome when designing a scalable system. The main focus of this paper is to present the
prototype of a system that elegantly solves these challenges.

(1) The resulting factor matrices for a huge network quickly become larger than the memory avail-
able on an individual commodity machine [22, 23]. For example, U and V with k = 100 and a
single precision factor representation for a graph with 250 million vertices already have a combined
size of about 200 GB. This estimation does not even take operating system buffers and caches, ob-
ject references and required statistics like degree distribution of the graph into account, which also
compete for memory.

(2) Due to the sheer number of observations in large datasets, we aim to leverage multiple cores and
machines to learn our desired matrix factorization. Unfortunately, SGD is an inherently sequential
algorithm. It randomly picks an observation and updates the model parameters before proceeding to
the next observation (c.f. Algorithm 1). When we run SGD in parallel on multiple cores, there is a
chance that we concurrently try to update the same ui or vj , which results in conflicting writes and
lost updates.

In order to overcome the first challenge, we decided for a distributed architecture that allows us to
partition the large model (the factor matrices) over several machines. We adapt a ‘Parameter Server’
architecture [17]. As illustrated in Figure 2, we partition the factor matrices over a set of machines,
to which we refer to as parameter machines. At the same time, we partition the graph (our input
data) over a set of so-called learner machines. Each learner machine runs multi-threaded SGD on
its portions of the input data. For every observation to process, the learner machine has to fetch the
corresponding factor vectors from the parameter machines, update them and write them back over
the network.

Figure 2: Parameter Server architecture.

This architecture inevitably leads to the second challege, the question of how to handle concurrent,
possibly conflicting updates to the factor vectors. When two learner machines fetch, update and
write back the same factor vector concurrently, one such update will be overridden.
In the special case of matrix factorization, approaches to parallelizing SGD have been proposed that
leverage a carefully chosen partitioning of the input data to avoid conflicting updates [7, 15]. As
these approaches require complex data movement and synchronization patterns and are at the same
time hard to adapt to a streaming scenario, we decided for an alternative approach that is simpler to
implement in a distributed setting. Instead of taking complex actions to prevent conflicting updates,
Factorbird builds upon a recently proposed parallelization scheme for SGD-based learning called
Hogwild! [14]. This work states that parallel SGD can be implemented without any locking if most
updates only modify small parts of the model. The authors explicitly name latent factor models for
matrix factorization as one such case.
The special nature of the matrix factorization problem allows us for a further optimization in our

4



system design, which reduces the required network traffic and at the same time greatly lowers the
probability for conflicting overwrites. We can reduce the communication cost by 50% through
intelligent partitioning, as follows. If we partition M by either rows or columns over the learning
machines, than the updates to either U or V become local, when we co-partition one of the factor
matrices (U in the case of partitioning by rows, V in the case of partitioning by columns) with M
on the learner machines.
In the light of minimizing update conflict potential, we decide to co-locate V on the learner machines
and keep U in the parameter machines (c.f. Figure 3). We choose this scheme for the following
reasons: In case of the follower graph, the number of updates to a factor vector ui in U is equal
to the out-degree of the corresponding vertex i, while the number of updates to a factor vector vj
in V is equal to the in-degree of the corresponding vertex j. As the in-degree distribution of the
follower graph has much higher skew than the out-degree distribution [21], we choose to localize
the updates to V , which gives us a higher reduction in conflict potential than localizing U . Other
graphs in twitter have similar skew in the degree distribution.

Figure 3: Partitioning scheme and system architecture.

4 Implementation

We implement Factorbird using twitter’s existing technology stack and infrastructure. We lever-
age an existing memcached cluster for the parameter machines and implement the learner machines
in Scala as a custom finagle application [18]. We use Hadoop’s distributed filesystem (HDFS) as
persistent datastore for reading inputs and storing the final results. Prepartitioning and statistics
computation of the input is conducted via MapReduce using Scalding jobs. The learner machines
are assigned resources via Apache Mesos.
The typical execution steps on a learner machine are as follows. First, the machine loads statistics
about the input graph and its assigned partition from HDFS, e.g. the number of edges and ver-
tices, the average edge weight and the degree distribution of the graph. These statistics are used for
learning as well as efficiently allocating memory for the required datastructures. Next, the learner
machine instantiates its local partition of V . Subsequently, the model learning phase starts: the
learner machine reads the edges of its assigned partition of the input graph in a streaming fashion.
For each edge (i, j), it reads the corresponding factor vector ui from memcached and the factor vec-
tor vj from its local partition of V . The reads from memcached are conducted in batches to increase
throughput. Next, the learner machine updates the factor vectors using SGD and writes them back1.
This process is repeated until a user-specified number of passes over the input graph has been con-
ducted. Finally, the learner machines persist the learned matrices U and V in a partitioned manner
in HDFS.
Factorbird makes extensive use of memory-efficient data structures for managing factor vectors, the

1Note that strictly speaking, we do not run vanilla Hogwild! on U , as memcached atomically updates the
whole factor vector instead of individually updating the factors.

5



local partition of V and graph statistics such as the degree per vertex. The main objective of these
data structures is to use as little memory as possible as well as to avoid object allocation and full
garbage collection invocations in the JVM. A factor vector as well as a partition of a factor matrix
are therefore internally represented by byte buffers and large primitive arrays, which are efficiently
preallocated. For example, a learning machine determines the size of its local partition of V at
startup time by reading the number of vertices assigned to its partition from the graph statistics.
The partition of V is internally represented by a huge float array, into which the individual factor
vectors (the columns of V ) are packed. A mapping of vertex ids to offsets in this array is stored
and update operations directly write to the underlying array. During the training phase, a learner
machine directly reads the training edges from a compressed file in HDFS in a streaming fashion.
If more than one pass through the training edges is necessary, the learner machine will on-the-fly
create a copy of the HDFS file on local disk and switch to streaming edges from this local file for
subsequent passes. Furthermore, some learning approaches require synthetically generated negative
examples [24] (possibly taken into account with a lower confidence than observed positive exam-
ples). We therefore implement on-the-fly generation of such negative examples (with a configurable
probability) and mix them into the original positive examples supplied on the learning machines.
The central abstraction for implementing the SGD updates of the learning algorithm within Factor-
bird is the Learner (c.f, Listing 1). It is the main interface for data scientists wanting to try new
models and shields the programmer from the complexity of the distributed nature of the underlying
learning process. The first important method that a programmer has to implement is initialize which
Factorbird uses to randomly initialize of the factor vectors in U and V (c.f. line in Algorithm 1). The
method update is where the SGD-based update of two factor vectors ui and vj is implemented. The
system provides the strength a(i, j) of the edge between vertex i and j, as well the vertex degrees
ni and nj and the error weight w(i, j) as additional arguments. A typical implementation of this
method conducts the steps from line 4 to 9 in Algorithm 1.

trait Learner {
def initialize(factors: FactorVector): Unit
def update(u_i: FactorVector, v_j: FactorVector,

a_ij: Float, n_i: Int, n_j: Int, w_ij: Float): Float
}

Listing 1: Learner abstraction.

5 Assessing Model Quality

The next aspect we focus on in Factorbird is the quality of the learned models. Ultimately, the mod-
els have to be evaluated using online experiments with real users, but during the development and
batch training phase, we concentrate on a simple offline metric: the prediction quality on held-out
data, measured by the root mean squared error (RMSE). Unfortunately, this prediction quality is
heavily influenced by the choice of hyperparameters for our model, such as η (which controls rate
of learning), λ (which controls regularization), number of factors k as well as the rate of decay of
the learning rate in our Learner implementation. In order to find a well-working hyperparameter
combination, we conduct a grid search in the hyperparameter space. We extend Factorbird to en-
able hold-out tests at scale. The Scalding job which prepares the input graph randomly splits the
edges into training set, validation set and test set. Factorbird then learns a model on the training
set, chooses the hyperparameter combination using the prediction quality on the validation set, and
finally computes the RMSE on the test set.
However, conducting a single training run with Factorbird for each hyperparameter combination to
inspect is tedious and takes a long time. We therefore we describe how to learn many models with
different hyperparameters at once to speed up the hyperparameter search. Given that we aim to in-
spect c hyperparameter combinations for a factorization of rank k, we pack the c factor vectors into
a large U of dimensionalitym×c∗k and a large V of dimensionality c∗k×n. We use a specialized
learner implementation that is aware of the packing (e.g. it knows that the factors for the p-th model
are contained in the p ∗ k-th to p ∗ (k + 1)-th entries of a factor vector) and learns c models at once.
Figure 4 illustrates how the factor matrices for all possible combinations of two different learning
rates η1, η2 and two different regularization constants λ1, λ2 would be packed into a large U and V .

6



Figure 4: Packing many models into one for hyperparameter search.

In order to compute the prediction quality on held-out data, Factorbird asks the Learner implementa-
tion for Predictors which the user has to provide. A Predictor predicts the strength of an unobserved
edge (i, j) from the corresponding factor vectors ui and vj (c.f., Listing 2).

trait Predictor {
def predict(u_i: FactorVector, v_j: FactorVector): Float

}

Listing 2: Predictor abstraction.

Optionally, the user can provide a LossEstimator, which estimates the current value of the loss
function using samples of edges and factors (c.f., Listing 3). During training, Factorbird continually
invokes the loss estimator and make the estimates inspectable via an external dashboard.

trait LossEstimator {
def estimateRegularizationComponent(
numRowsOfU: Int, sampleOfU: Iterator[FactorVector],
numColumnsOfV: Int, sampleOfV: Iterator[FactorVector]): Double

def estimateErrorComponent(numEdges: Long,
sampleOfEdges: Iterator[Edge], partitionOfU: FactorMatrix,
partitionOfV: FactorMatrix): Double

}

Listing 3: Abstraction for loss estimation.

6 Experiments

We run experiments on various subsets of ‘RealGraph’, a graph that models various interactions
between twitter users [20]. The learner machines for our experiments are provisioned by Apache
Mesos. In all our experiments, we factorize the binarized adjacency matrix of the graph subset. That
means the, transformation function a(i, j) returns 1 if user i interacted with user j and 0 otherwise
(in the case of a synthetic negative example). We equally weight all prediction errors (w(i, j) = 1).
In this work, we present only preliminary experiments, aimed at validating the correctness of our
system and showing its capacity to handle twitter-scale graphs. There is still a large potential for
improvements in accuracy and performance that we will tackle in future work. We run a first set of
experiments on a small sample of the RealGraph, consisting of 100 million interactions between 440
thousand popular users. Additionally, we make Factorbird generate 500 million synthetic negative
edges.

Benefits of increasing model complexity. In the first experiment, we show the positive effects on
prediction quality of the individual parts of our chosen model. We randomly split the dataset into
80% training set, 10% validation set and 10% test set. We train models with increasing complex-

7



0 5 10 15 20

0.2

0.25

0.3

0.35

k (# factors)

R
M

S
E

 

 

avg
avg + biases
avg + biases + factorization

Figure 5: Prediction quality on held-out data
with increasing model complexity.

−0.2 0 0.2 0.4 0.6

−0.2

−0.1

0

0.1

0.2

@onedirection
@kanyewest

@justinbieber

popstars

@bueti

@sigmargabriel

@Yatsenyuk_AP

european politicians

@ricksantorum

@michellebachmann

tea party

@diysos

@napoleononfox
@abcnewsdc

tv shows

@emmaspan

@disupdates
@lions

u.s. sports

@venusatuluri
@aneeshs

@ajeet

tweeps

factor 1

fa
ct

or
 2

Figure 6: Plot of a selection of twitter users as
positioned by a factorization with k = 2 of a
sample of RealGraph.

ity and measure their prediction quality in terms of RMSE on the 10% held-out data in the test set
(c.f. Figure 5). We start with a baseline that only uses the global bias (the average edge strength),
followed by a more complex model that uses the global bias as well as vertex-specific bias terms.
Finally, we train biased factorization models with k ∈ {2, 5, 10, 20}. We choose the hyperparame-
ters using the validation set. The outcome confirms that an increase in the complexity of our model
results in an increase in prediction quality. The global bias baseline provides an RMSE of 0.3727,
adding the vertex-specific bias terms reduces the error to 0.3121 and incorporating the factors gives
additional improvements, reducing the error to 0.2477 for k = 20.

Visual inspection. Next, we plot a selection of factor vectors from the V matrix of a biased factor-
ization with k = 2. Two users i and j will be close in the resulting low-dimensional space if their
follower vectors m•i and m•j are roughly linear combinations of each other. Due to homophily, we
expect twitter users sharing a common interest or characteristic to have a large overlap in followers
and therefore to be much closer in the resulting space. Figure 6 indicates that factorizations pro-
duced by Factorbird have this property. We see several clusters of twitter accounts of similar type,
e.g. a cluster of european politicians, containing Sigmar Gabriel (@sigmargabriel) and Rein-
hard Buetikofer (@bueti) from Germany as well as Arseniy Yatsenyuk (@Yatsenuk AP) from
Ukraine. Another cluster consists of popstars such as Kanye West (@kanyewest), Justin Bieber
(@justinbieber) and the boy-band One Direction (@onedirection). A third one related to
U.S. sports contains Emma Span (@emmaspan), an editor for baseball at Sports Illustrated, Detroit’s
football team (@lions) and an account of the Daytona International Speedway (@disupdates).

Scale-out. For the scale-out experiments we build a matrix based on a large subset of Twitter’s
RealGraph [20] consisting of more than 38.5 billion non-zeros (half of which are synthetic negative
examples). The dimensions of the matrix are 229 million × 195 million. To the best of our knowl-
edge, this is the largest dataset on which collaborative filtering experiments have been published so
far. Often, the Netflix prize dataset [3] is used for scale-out tests [11]. Our dataset is more than two
orders of magnitude larger, having approximately 470 times more rows, 11,000 times more columns
and 385 times more datapoints. We run Factorbird using 50 instances for the learner machines,
provisioned in a Mesos cluster, with 16 cores and 16 gb of memory each. We leverage a shared
memcached cluster for our parameter machines, with a guaranteed quota of 5 million commands per
second. We run two passes of hyperparameter search on 80% of the data for 16 different learners
with k = 5. The rank of the factor matrices U and V is (5 + 1) ∗ 16 = 96, which means we train a
model with approximately (229M + 195M) ∗ 96 ≈ 40B parameters. A single SGD pass through
the training set finishes in about 2.5 hours 2. In this experiment, Factorbird issues more than 4.2
million commands per second to memcached on average and updates around 400M parameters per
second.

2Except for a few stragglers, which Mesos provisioned on machines with low network bandwidth (Unfor-
tunately, Mesos cannot guarantee a defined network bandwidth at the moment)

8



7 Related Work

SGD- and ALS-based matrix factorization techniques for recommender systems have been exten-
sively studied in the context of the Netflix Prize [2, 9]. These techniques have been extended to work
on implicit feedback data [8] and to optimize metrics different from RMSE [10, 16].
A large body of work has been conducted with respect to parallelizing and distributing matrix fac-
torization. This includes work on the scalability of the algorithms itself, e.g. by introducing biased
sampling for SGD to avoid conflicting updates during concurrent execution [7, 5, 15] or by proving
convergence under a minor amount of update conflicts [14]. Furthermore, distributed implemen-
tations have been proposed and evaluated on MapReduce-based [4], graph-parallel [11, 12] and
specialized systems [13].

8 Future Work

In future work, we aim to extend Factorbird to a streaming scenario. We plan to bootstrap Factorbird
with a factorization that was trained offline and update this factorization model online from a stream
of incoming real-time interactions (e.g., user follows). Furthermore, we would like to experiment
with factorizing multiple matrices at once, in order to incorporate different types of interactions in
a single factorization model. Another technical issue to work on in the future is fault tolerance. A
possible approach to recovery in case of failures could be to restart learner and parameter machines
from asynchronously written checkpoints of the partitions of U and V which they hold [19]. More-
over, we plan to investigate ways to reduce the amount of network traffic caused by Factorbird, e.g.
by compression, factor vector caching or via a biased sampling of the edges to allow us to use re-
trieved factor vectors for more than a single update. We will potentially replace memcached with a
custom application to be able to achieve higher throughput and conduct true Hogwild-style updates
on the parameter machines. Moreover, this would allow us to run aggregations on the parameter
machines. Additionally, we would like to implement dynamic load adaption in Factorbird to miti-
gate the negative effects of stragglers on the overall runtime. We aim to factorize the whole twitter
interaction graph with Factorbird in upcoming work.

9



References
[1] Amatriain, X. (2012) Building industrial-scale real-world recommender systems. In ACM Conference on

Recommender Systems, http://goo.gl/cqKAi

[2] Koren, Y., Bell, R. & Volinsky C. (2009) Matrix factorization techniques for recommender systems. In
Computer 42.8, pp. 30–37.

[3] Bennett, J. & Lanning, S. (2007) The Netflix Prize. In KDD Cup and Workshop, p. 35.

[4] Schelter, S., Boden, C., Schenck, M., Alexandrov, A. & Markl, V. (2013). Distributed matrix factorization
with mapreduce using a series of broadcast-joins. In ACM Conference on Recommender Systems, pp.
281-284.

[5] Teflioudi, C., Makari, F. & Gemulla, R. (2012) Distributed Matrix Completion. In IEEE International
Conference on Data Mining, pp. 655-664.

[6] Das, A. S., Datar, M., Garg, A. & Rajaram, S. (2007). Google news personalization: scalable online
collaborative filtering. In International Conference on the World Wide Web, pp. 271-280.

[7] Gemulla, R., Nijkamp, E., Haas, P. J. & Sismanis, Y. (2011). Large-scale matrix factorization with dis-
tributed stochastic gradient descent. In ACM Conference on Knowledge Discovery and Data mining, pp.
69-77. top of the rock new york

[8] Hu, Y., Koren, Y. & Volinsky, C. (2008). Collaborative filtering for implicit feedback datasets. In IEEE
International Conference on Data Mining, pp. 263-272.

[9] Zhou, Y., Wilkinson, D., Schreiber, R. & Pan, R. (2008). Large-scale parallel collaborative filtering for
the netflix prize. In Algorithmic Aspects in Information and Management, pp. 337-348.

[10] Rendle, S., Freudenthaler, C., Gantner, Z. & Schmidt-Thieme, L. (2009). BPR: Bayesian personalized
ranking from implicit feedback. In Conference on Uncertainty in Artificial Intelligence, pp. 452-461.

[11] Low, Y., Bickson, D., Gonzalez, J., Guestrin, C., Kyrola, A. & Hellerstein, J. M. (2012). Distributed
GraphLab: a framework for machine learning and data mining in the cloud. In Proceedings of the VLDB
Endowment, 5(8), pp. 716-727.

[12] Xin, R. S., Crankshaw, D., Dave, A., Gonzalez, J. E., Franklin, M. J. & Stoica, I. (2014). GraphX:
Unifying Data-Parallel and Graph-Parallel Analytics. arXiv preprint arXiv:1402.2394.

[13] Yun, H., Yu, H. F., Hsieh, C. J., Vishwanathan, S. V. N. & Dhillon, I. (2013). NOMAD: Non-locking,
stOchastic Multi-machine algorithm for Asynchronous and Decentralized matrix completion. Proceed-
ings of the VLDB Endowment, 7(11).

[14] Recht, B., Re, C., Wright, S. & Niu, F. (2011). Hogwild!: A lock-free approach to parallelizing stochastic
gradient descent. In Advances in Neural Information Processing Systems, pp. 693-701.

[15] Recht, B. & Re, C. (2013). Parallel stochastic gradient algorithms for large-scale matrix completion. In
Mathematical Programming Computation, 5(2), pp. 201-226.

[16] Weimer, M., Karatzoglou, A., Le, Q. V. & Smola, A. (2007). Maximum Margin Matrix Factorization for
Collaborative Ranking. In Advances in Neural Information Processing Systems.

[17] Li, M., Zhou, L., Yang, Z., Li, A., Xia, F., Andersen, D. G. & Smola, A. (2014) Parameter Server for
Distributed Machine Learning.

[18] Eriksen, M. (2013). Your server as a function. In Workshop on Programming Languages and Operating
Systems, p. 5.

[19] Schelter, S., Ewen, S., Tzoumas, K. & Markl, V. (2013). “All Roads Lead to Rome:” Optimistic Recovery
for Distributed Iterative Data Processing. In ACM International Conference on Information & Knowledge
Management, pp. 1919-1928.

[20] Kamath, K., Sharma, A., Wang, D. & Yin, Z. (2014) RealGraph: User Interaction Prediction at Twitter.
In User Engagement Optimization Workshop @ KDD

[21] Myers, S. A., Sharma, A., Gupta, P. & Lin, J. (2014). Information network or social network?: the
structure of the twitter follow graph. In International Conference on the World Wide Web, pp. 493-498.

[22] Hastie, T., Mazumder, R., Lee, J. D. Lee & Zadeh, R. (2014). Matrix Completion and Low-Rank SVD
via Fast Alternating Least Squares. In arXiv

[23] Udell, M., Horn, C., Zadeh, R. & Boyd, S. (2014). Generalized Low Rank Models. In arXiv

[24] Pan, R., Zhou, Y., Cao, B., Liu, N. N., Lukose, R., Scholz, M. & Yang, Q. (2008). One-class collaborative
filtering. In IEEE International Conference on Data Mining, pp. 502-511.

10

http://goo.gl/cqKAi

	Introduction
	Background: Latent Factor Models
	System Design
	Implementation
	Assessing Model Quality
	Experiments
	Related Work
	Future Work

