
Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Dimension Independent Similarity
Computation

Reza Bosagh Zadeh
Joint work with Ashish Goel

ICME Seminar February 2013

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Outline

1 Introduction
The Problem
Why Bother
MapReduce

2 First Pass
Naive
Analysis

3 DISCO
Algorithm
Shuffle Size
Correctness

4 Experiments
Large
Small

5 More Results

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Computing AT A

Given N × D matrix A with {0,1} entries and N � D,
compute AT A.

A =

a1,1 a1,2 · · · a1,D
a2,1 a2,2 · · · a2,D

...
...

. . .
...

aN,1 aN,2 · · · aN,D

A is tall and skinny, example values N = 1012,D = 106.
A has sparse rows, each row has at most L nonzeros.
A is stored across thousands of machines.

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Computing All Pairs of Cosine Similarities

We can focus on computing cosine similarities between
pairs of columns of A

cos(i , j) =
#(wi ,wj)√

#(wi)
√

#(wj)

wi is the i ′th column of A
Since A has 0-1 entries, #(wi ,wj) = wT

i wj and√
#(wi) = ||wi ||2

We focus on provable results for large entries, in
particular those with cos(i , j) ≥ ε

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Ubiquitous problem

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

MapReduce

With such large datasets (e.g. N = 1012), we must use
many machines.
Biggest clusters of computers use MapReduce
MapReduce is the tool of choice in such distributed
systems
With so many machines (around 1000), CPU power is
abundant, but communication is expensive
2 Minute description of MapReduce...

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

MapReduce

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

MapReduce

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

MapReduce

Input gets dished out to the mappers roughly equally
Two performance measures
1) Shuffle size: shuffling the data output by the
mappers to the correct reducer is expensive
2) Largest reduce-key: can’t send too much of the data
to a single reducer
First pass at implementing cos(i , j) in MapReduce...

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Naive Implementation

1 Given row t , Map with NaiveMapper (Algorithm 1)
2 Reduce using the NaiveReducer (Algorithm 2)

Algorithm 1 NaiveMapper(t)

for all pairs (w1,w2) in t do
emit ((w1,w2)→ 1)

end for

Algorithm 2 NaiveReducer((w1,w2), 〈r1, . . . , rR〉)

a =
∑R

i=1 ri
output a√

#(w1)#(w2)

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Analysis for First Pass

Very easy analysis
1) Shuffle size: O(NL2)

2) Largest reduce-key: O(N)

Both depend on N, the dimension, and are intractable
for N = 1012,L = 100.
We’ll bring both down via clever sampling

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

DISCO Algorithm

Algorithm 3 DISCOMapper(t)

for all pairs (w1,w2) in t do
With probability

p
ε

1√
#(w1)

√
#(w2)

emit ((w1,w2)→ 1)
end for

Algorithm 4 DISCOReducer((w1,w2), 〈r1, . . . , rR〉)

a =
∑R

i=1 ri
output a ε

p

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Analysis for DISCO

Three things to prove:
1 Shuffle size: O(DL log(D)/ε)

2 Largest reduce-key: O(log(D)/ε)

3 The sampling scheme actually works with high
probability

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Shuffle size for DISCO

Theorem

The expected shuffle size for DISCOMapper is
O(DL log(D)/ε).

Proof.
The expected contribution from each pair of words will
constitute the shuffle size:

D∑
i=1

D∑
j=i+1

#(wi ,wj)∑
k=1

Pr[CosineSampleEmit(wi ,wj)]

=
D∑

i=1

D∑
j=i+1

#(wi ,wj)Pr[CosineSampleEmit(wi ,wj)]

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Shuffle size for DISCO

Proof.

≤
D∑

i=1

D∑
j=i+1

p
ε

#(wi ,wj)√
#(wi)

√
#(wj)

(by AM-GM) ≤ p
2ε

D∑
i=1

D∑
j=i+1

#(wi ,wj)(
1

#(wi)
+

1
#(wj)

)

≤ p
ε

D∑
i=1

1
#(wi)

D∑
j=1

#(wi ,wj)

≤ p
ε

D∑
i=1

1
#(wi)

L#(wi) =
p
ε

LD = O(DL log(D)/ε)

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Shuffle size for DISCO

Proof.

≤
D∑

i=1

D∑
j=i+1

p
ε

#(wi ,wj)√
#(wi)

√
#(wj)

(by AM-GM) ≤ p
2ε

D∑
i=1

D∑
j=i+1

#(wi ,wj)(
1

#(wi)
+

1
#(wj)

)

≤ p
ε

D∑
i=1

1
#(wi)

D∑
j=1

#(wi ,wj)

≤ p
ε

D∑
i=1

1
#(wi)

L#(wi) =
p
ε

LD = O(DL log(D)/ε)

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Shuffle size for DISCO

Proof.

≤
D∑

i=1

D∑
j=i+1

p
ε

#(wi ,wj)√
#(wi)

√
#(wj)

(by AM-GM) ≤ p
2ε

D∑
i=1

D∑
j=i+1

#(wi ,wj)(
1

#(wi)
+

1
#(wj)

)

≤ p
ε

D∑
i=1

1
#(wi)

D∑
j=1

#(wi ,wj)

≤ p
ε

D∑
i=1

1
#(wi)

L#(wi) =
p
ε

LD = O(DL log(D)/ε)

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Shuffle size for DISCO

Proof.

≤
D∑

i=1

D∑
j=i+1

p
ε

#(wi ,wj)√
#(wi)

√
#(wj)

(by AM-GM) ≤ p
2ε

D∑
i=1

D∑
j=i+1

#(wi ,wj)(
1

#(wi)
+

1
#(wj)

)

≤ p
ε

D∑
i=1

1
#(wi)

D∑
j=1

#(wi ,wj)

≤ p
ε

D∑
i=1

1
#(wi)

L#(wi) =
p
ε

LD = O(DL log(D)/ε)

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Shuffle size for DISCO

It is easy to see via Chernoff bounds that the above
shuffle size is obtained with high probability.
O(DL log(D)/ε) has no dependence on the dimension
N, this is the heart of DISCO.
Happens because higher magnitude columns are
sampled with lower probability:

p
ε

1√
#(w1)

√
#(w2)

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Largest reduce key for DISCO

Each reduce key receives at most p
ε values (the

oversampling parameter)
Immediately get that reduce-key complexity is
O(log(D)/ε)

Also independent of dimension N. Happens because
high magnitude columns are sampled with lower
probability.

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Correctness

Since higher magnitude columns are sampled with
lower probability, are we guaranteed to obtain correct
results w.h.p.?
Yes. But provably only for points that have cos(i , j) ≥ ε

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Correctness

Theorem

For any two words x and y having cos(x , y) ≥ ε, let
X1,X2, . . . ,X#(x ,y) represent indicators for the coin flip in
calls to DISCOMapper with x , y parameters, and let
X =

∑#(x ,y)
i=1 Xi . For any 1 > δ > 0, we have

Pr
[
ε

p
X > (1 + δ) cos(x , y)

]
≤
(

eδ

(1 + δ)(1+δ)

)p

and

Pr
[
ε

p
X < (1− δ) cos(x , y)

]
< e−pδ2/2

Relative error guaranteed to be low with high probability.

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Correctness

Proof.
In the paper at http://reza-zadeh.com
Uses standard concentration inequality for sums of
indicator random variables.
Ends up requiring that the oversampling parameter p
be set to p = log(D2) = 2 log(D).

http://reza-zadeh.com

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Experiments

Large scale experiment live at twitter.com

Smaller scale experiment with points as words, and
dimensions as tweets
N = 200M,D = 1000,L = 10

twitter.com

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Experiments

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

similarity threshold

a
v
g

 r
e

la
ti
v
e

 e
rr

DISCO Cosine Similarity

Figure: Average error for all pairs with similarity ≥ ε. DISCO
estimated Cosine error decreases for more similar pairs.

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Experiments

0 2 4 6 8 10 12 14 16 18
0

0.2

0.4

0.6

0.8

1

log(p / ε)

DISCO Cosine shuffle size vs accuracy tradeoff

D
IS

C
O

 S
h
u
ff
le

 /
 N

a
iv

e
 S

h
u
ff
le

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

a
v
g
 r

e
la

ti
v
e
 e

rr

DISCO Shuffle / Naive Shuffle

avg relative err

Figure: As p/ε increases, shuffle size increases and error
decreases. There is no thresholding for highly similar pairs here.

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Other Similarity Measures

This all works for many other similarity measures.

Similarity Definition Shuffle Size Reduce-key size
Cosine #(x,y)√

#(x)
√

#(y)
O(DL log(D)/ε) O(log(D)/ε)

Jaccard #(x,y)
#(x)+#(y)−#(x,y) O((D/ε) log(D/ε)) O(log(D/ε)/ε)

Overlap #(x,y)
min(#(x),#(y)) O(DL log(D)/ε) O(log(D)/ε)

Dice 2#(x,y)
#(x)+#(y) O(DL log(D)/ε) O(log(D)/ε)

Table: All sizes are independent of N, the dimension. These are
bounds for shuffle size without combining. Combining can only
bring down these sizes.

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Locality Sensitive Hashing

MinHash from the Locality-Sensitive-Hashing family
can have its vanilla implementation greatly improved by
DISCO.
Theorems for shuffle size and correctness in paper.

Dimension
Independent

Similarity
Computation

Reza Zadeh

Introduction
The Problem

Why Bother

MapReduce

First Pass
Naive

Analysis

DISCO
Algorithm

Shuffle Size

Correctness

Experiments
Large

Small

More Results

Fin.

Consider DISCO if you ever need to compute AT A for
large sparse A
Many more experiments and results at
reza-zadeh.com

Thanks!

reza-zadeh.com

	Introduction
	The Problem
	Why Bother
	MapReduce

	First Pass
	Naive
	Analysis

	DISCO
	Algorithm
	Shuffle Size
	Correctness

	Experiments
	Large
	Small

	More Results

