
Logistic Matrix Factorization for Implicit
Feedback Data

Christopher C. Johnson
Spotify

New York, NY 10011
cjohnson@spotify.com

Abstract

Collaborative filtering with implicit feedback data involves recommender
system techniques for analyzing relationships betweens users and items us-
ing implicit signals such as click through data or music streaming play
counts to provide users with personalized recommendations. This is in con-
trast to collaborative filtering with explicit feedback data which aims to
model these relationships using explicit signals such as user-item ratings.
Since most data on the web comes in the form of implicit feedback data
there is an increasing demand for collaborative filtering methods that are
designed for the implicit case. In this paper we present Logistic Matrix Fac-
torization (Logistic MF), a new probabilistic model for matrix factorization
with implicit feedback. The model is simple to implement, highly paral-
lelizable, and has the added benefit that it can model the probability that
a user will prefer a specific item. Additionally, we show it to experimen-
tally outperform the widely adopted Implicit Matrix Factorization method
using a dataset composed of music listening behavior from streaming music
company Spotify.

1 Introduction

Users of modern e-commerce services are exposed to a myriad of diverse product choices.
Helping users sort through these choices and find what they are looking for can mean a
huge increase in user satisfaction and company profit. For this reason, most major web
businesses are investing substantial resources into building features to simplify and person-
alize the process of sorting through their product options. The goal of recommender systems
is to analyze data associated with users and products in order to provide users with person-
alized recommendations. Recommender systems generally fall into two categories: content
based and collaborative filtering. Content based strategies involve analyzing features di-
rectly associated with the users and products such as a user’s age, sex, and demographic,
or the release year and genre of a specific music album. Collaborative filtering based rec-
ommender systems examine users’ past behavior in order to predict how users will act in
the future. Perhaps the most famous example of this comes from the Netflix Prize [2] in
which the movie streaming service Netflix1 released a dataset of explicit movie ratings from
500,000 anonymized users and offered a $1 million prize to the first team of researchers able
to improve the company’s RMSE performance by 10%. The contest, which was eventually
won by the BellKor team, stirred up a great deal of research in analyzing methods for collab-
orative filtering with explicit feedback data such as Netflix movie ratings. However, implicit
feedback data such as clicks, page views, purchases, or media streams can be collected at a
much larger and faster scale and without needing the user to provide any explicit sentiment.

1https://www.netflix.com

1

For this reason, there has been a recent surge of work focusing on the task of collaborative
filtering with implicit as opposed to explicit feedback data [17].
In this paper we explore a new method for collaborative filtering with implicit feedback
data that’s based in part on the traditional matrix factorization strategy. We first describe
the theoretical foundation of the model and then describe how it can be trained using
an alternating gradient descent approach. Next, we show how the model training can be
parallelized and scaled up to Millions of users and items using modern high performance
computing frameworks such as Hadoop and Spark. Finally, we provide an experimental eval-
uation of our model using a dataset of music streaming counts from online music streaming
service Spotify2. In this setting we compare our model to the frequently used Implicit Matrix
Factorization (IMF) model [12] as well as a baseline popularity based strategy.

2 Problem Setup and Notation

The goal of collaborative filtering with implicit feedback data is to analyze a user’s past
behavior in order to predict how they will act in the future. Implicit feedback can come in
many forms such as clicks, page views, or media streaming counts, but in all cases we will
assume that we have a set of non-negative feedback values associated with each pair of users
and items in our domain. More formally:

• U = (u1, . . . , un): a group of n users
• I = (i1, . . . , im): a group of m items
• R = (rui)n×m: a user-item observation matrix where rui ∈ R≥0 represents the

number of times that user u interacted with item i

Notice that we don’t require the rui values to be integers but instead allow them to be any
non-negative reals. This is to allow contextual or temporal weighting of observations. For
example, in the case of a music streaming service such as Spotify we may choose to weight
explicit clicks by a user higher than streams without clicks. Additionally, we may choose
to weight more recent user streams higher than older streams as a user’s taste may change
slightly over time. Furthermore, it’s important to note that in most cases R is a very sparse
matrix as most users only interact with a small number of items in I. For any entries rui
where user u does not interact with item i we place 0′s. It’s important to note that that
a value of 0 does not necessarily imply that the user does not prefer the item, but could
simply imply that the user does not know about the item. Then, our goal is to find the
top recommended items for each user for each item that they have not yet interacted with
(where rui = 0).

3 Related Work

Following the Netflix prize [2], collaborative filtering has become a well studied topic in the
domain of recommender systems. In most cases this has involved models that take as input
a set of explicit user-item ratings and attempt to recommend users items that they haven’t
yet rated. Neighborhood based methods were some of the first collaborative filtering models
for explicit feedback data and can be either user-oriented or item-oriented. User-oriented
neighborhood methods search the domain of U to find users that have rated or interacted
with similar items and then recommend items that similar users prefer [10]. Item-oriented
neighborhood methods instead search the domain of I to find items similar to the items
that a user has either rated highly or interacted with. Matrix Factorization models seek to
find a low rank approximation to a sparse ratings matrix by minimizing a loss function on
the known ratings [6]. These methods are often a popular choice for industry recommender
systems due to their simplicity and superior performance to neighborhood based methods.
Additionally, MF models have been shown to be efficiently parallelizable and highly scalable
to large web scale datasets [7, 19, 23, 24]. Matrix Factorization models are a subset of a
larger family of models known as latent factor models. Latent factor models attempt to

2https://www.spotify.com

2

uncover latent or unobserved factors to encode the users and items in U and I. Examples
of other latent factor models include Probabilistic Latent Semantic Indexing (PLSA) [11] ,
Latent Dirchlet Allocation (LDA) [3], and Restricted Boltzmann Machines (RBM) [21], all
of which have been applied to the domain of collaborative filtering.
In many real world scenarios, explicit feedback such as item ratings can be difficult to obtain
and so there has recently been considerable attention spent on methods that can learn from
implicit feedback datasets such as clicks, views, or purchases [17]. Hu et al. [12] propose
treating implicit feedback data as binary preferences with a higher confidence placed on
observations that include a greater number of interactions. They then formulate a Matrix
Factorization problem that minimizes a weighted root mean squared error over the training
data. Others have formulated the problem as One-Class Collaborative Filtering in which
data is considered either positive or unlabeled. Pan et al. [18] employ a weighted Matrix
Factorization approximation to One-Class Collaborative Filtering using negative sampling.
Many hybrid approaches have also been developed that utilize side information such as
context, temporal information, or item content within traditional CF models. Context-aware
collaborative filtering attempts to take into account the context with which users provided
implicit feedback, such as the time of day, day of the week, or location. Karatzoglou et
al. [13] propose a tensor factorization model that generalizes the traditional MF approach
to incorporate contextual side information. Koren [14] proposes a CF model that takes
into account how a user’s taste drifts over time by modeling the temporal dynamics of the
data. Another popular approach is to utilize item content such as metadata, text, or audio
content to improve collaborative filtering models. Gunawardana et al. [9] propose Unified
Botzmann Machines which are probabilistic models that encode content information into
the collaborative filtering framework.
Probabilistic approaches to collaborative filtering attempt to encode the probability of a
user choosing to interact with an item. Salakhutdinov et al. [20] model the conditional
distribution of an explicit ratings matrix given user and item latent factor vectors as being
distributed according to a Gaussian and solve for optimal vectors by maximizing the log-
posterior. Mnih et al. [16] provide a probabilistic framework for the implicit case where
they model the probability of a user choosing an item as being distributed according to a
normalized exponential function. They avoid linear time computation and approximate the
normalization to the distribution by traversing a tree structure. More recently, Goplan et al.
[8] introduced a factorization model that factorizes users and items by Poisson distributions.
In contrast to their work we propose a new probabilistic framework for the implicit case in
which we model the probability of a user choosing an item by a logistic function.

4 Logistic MF

Our model takes a similar approach to [12] by factorizing the observation matrix R by 2
lower dimensional matrices Xn×f and Ym×f where f is the number of latent factors. The
rows of X are latent factor vectors that represent a user’s taste while the columns of Y T are
latent factor vectors that represent an item’s style, genre, or other implicit characteristics.
However, while [12] minimizes the weighted RMSE between a binary based preference matrix
and the product of U and V , we take a probabilistic approach.
Let lu,i denote the event that user u has chosen to interact with item i (user u prefers item
i). Then, we can let the probability of this event occurring be distributed according to a
logistic function parameterized by the sum of the inner product of user and item latent
factor vectors and user and item biases.

p(lui | xu, yi, βi, βj) = exp(xiyTi + βu + βi)
1 + exp(xuyTi + βu + βi)

(1)

Here, the βi and βj terms represent user and item biases which are meant to account for
variation in behavior across both users and items. Some users will have a tendency to
interact with a diverse assortment of items in I while others will only interact with a small

3

subset. Similarly, some items will be very popular and so will have a high expectation of
being interacted with across a broad audience while other items will be less popular and
only apply to a niche group. The bias terms are latent factors associated with each user
u ∈ U and item i ∈ I that are meant to offset these behavior and popularity biases.
Given this formulation, let the non-zero entries of our observation matrix rui 6= 0 represent
positive observations and the zero entries rui = 0 represent negative observations. Addi-
tionally, similar to [12], we define our “confidence” in the entries of R as c = αrui where
α is a tuning parameter. Then, let each nonzero element rui 6= 0 serve as c positive obser-
vations and each zero element rui = 0 serve as a single negative observation. Increasing α
places more weight on the non-zero entries while decreasing α places more weight on the
zero entries. We’ve found that choosing α to balance the positive and negative observations
generally yields the best results. Additionally, it should be noted that other confidence
functions can replace c. For example, to remove the power user bias that comes from a
dataset where a small minority of users contribute the majority of the weight it can help to
use a log scaling function such as:

c = 1 + α log(1 + rui/ε)

By making the assumption that all entries of R are independent we derive the likelihood of
our observations R given the parameters X, Y , and β as:

L(R | X,Y, β) =
∏
u,i

p(lui | xu, yi, βu, βi)αrui(1− p(lui | xu, yi, βu, βi)) (2)

Additionally, we place zero-mean spherical Gaussian priors on user and item latent factor
vectors to help regularize the model and avoid over fitting to the training data.

p(X | σ2) =
∏
u

N (xu | 0, σ2
uI), p(Y | σ2) =

∏
i

N (yi | 0, σ2
i I)

Taking the log of the posterior and replacing constant terms with a scaling parameter λ we
arrive at the following.

log p(X,Y, β | R) =
∑
u,i

αrui(xuyTi +βu+βi)−(1+αrui) log(1+exp(xuyTi +βu+βi))−
λ

2 ‖xu‖
2−λ2 ‖yi‖

2

(3)
Notice that placing zero mean Gaussian priors on the latent factor vectors simply amounts
to `2-regularization of the user and item vectors. Then, our goal is to learn X, Y , and β
that maximize the log posterior (3).

arg maxX,Y, β log p(X,Y, β | R) (4)

A local maximum of the objective defined in (4) can be found by performing an alternating
gradient ascent procedure. In each iteration we first fix the user vectors X and biases β
and take a step towards the gradient of the item vectors Y and biases β. Next, we fix the
item vectors Y and biases β and take a step towards the gradient of the user vectors X and
biases β. The partial derivatives for the user vectors and biases are given by:

∂

∂xu
=

∑
i

αruiyi −
yi(1 + αrui) exp(xuyTi + βu + βi)

1 + exp(xuyTi + βu + βi)
− λxu (5)

∂

∂βu
=

∑
i

αrui −
(1 + αrui) exp(xuyTi + βu + βi)

1 + exp(xuyTi + βu + βi)
(6)

4

Each iteration is linear in the number of users |U | and items |I|. Though linear time
complexity might not seem prohibitive, for larger domains this can become a limitation. In
situations where linear computation is not possible we sample fewer negative samples (rui =
0) and decrease α in response. This gives enough of an approximation to the full loss that
near optimal vectors can be solved with much less computation time. Additionally, we’ve
found that the number of iterations required for convergence could be reduced dramatically
by choosing the gradient step sizes adaptively via AdaGrad [5]. Let xtu denote the value of
xu at iteration t and gtxu

denote the gradient of (3) with respect to xu at iteration t. At
iteration t we perform the following AdaGrad update to xu.

xtu = xt−1
u + γgt−1

u√∑t−1
t′=1 g

t′
u

2
(7)

5 Scaling Up

Each iteration of the alternating gradient descent procedure involves computing the gradient
for all latent factor vectors and then taking a step towards the positive direction of the
gradient. Each of these gradients (5, 6) involves a sum of a set of functions that each
depend on a single user and item. These summations can be performed in parallel and fit
the MapReduce programming paradigm.
To scale up computation we employ a sharding technique similar to those used by other
latent factor models [4, 7]. We first partition R into K×L blocks of K rows and L columns
where K � n and L � m are parallelization factors. Additionally, we partition X into K
blocks and Y into L blocks. Figure 1 gives a pictorial representation of the sharding of R.
Each block depends on at most n/K users and m/L items so even if the full observation
matrix R and set of user and item matrices X and Y cannot fit in memory, we can choose
parallelization factors K and L such that each block can fit in memory. In the map phase,
we partition all observations rui, user vectors xu, and item vectors yi from the same block
to the same mapper. For each pair of users and items u and i we compute the following in
parallel.

vui = αruiyi −
yi(1 + αrui) exp(xuyTi + βu + βi)

1 + exp(xuyTi + βu + βi)
(8)

bui = αrui −
(1 + αrui) exp(xuyTi + βu + βi)

1 + exp(xuyTi + βu + βi)
(9)

In the reduce phase we key off u (or i if performing an item iteration) such that each vui and
bui that map to the same user u (or item i if performing an item iteration) are sent to the
same reducer. It follows that ∂

∂xu
=

∑
i vui and ∂

∂βu
=

∑
i bui and so these summations can

be efficiently aggregated in parallel in the reduce phase. Finally, once the partial derivates
∂
∂xu

and ∂
∂βu

have been computed we then update xu and βu according to (7).

6 Experimental Study

6.1 Dataset

We evaluated our model using a dataset consisting of user listening behavior from music
streaming service Spotify. Our dataset is composed of the listening behavior for |X| =
50, 000 uniformly random active users, limiting ourselves to the top |I| = 10, 000 most
popular artists on Spotify. For each user we tracked the number of times they listened to
each artist in I over a period of 2 years from May, 2011 to June 2013. We define a “listen” to
be any continuous stream of a song for more than 30 seconds. This is to remove a lot of the
bias that comes from users sampling artists that they end up not liking. For each user-item
pair in U × I we aggregated a tuple of the form (<user>, <artist>, <listens>) where

5

Figure 1: Sharding of users and items into K ×L blocks for MapReduce implementation of
model training.

<user> ∈ U , <artist> ∈ I, and rui = <listens>. In total, R is composed of 86 million
non-zero entries and 414 million zero entries. We chose to keep the dataset simple and not
add additional contextual or temporal weighting.

6.2 Evaluation Metric

One of the difficulties with evaluating collaborative filtering models with implicit feedback
datasets is that the data only encodes positive feedback. If a user doesn’t listen to a
particular artist it doesn’t necessarily mean that they dislike the artist but could instead
mean that they’ve never heard of the artist. In fact, if a user has only listened to a particular
artist once or twice this often indicates that the user tried out the artist but ultimately
decided that they didn’t like them. On the other hand, if a user listens to an artist a large
number of times then this is a strong positive signal that the user likes the artist. Due to
the lack of negative feedback, we choose a recall based evaluation metric known as Mean
Percentage Ranking (MPR) [12] that evaluates a user’s satisfaction with an ordered list of
recommended items.
We removed a uniform random subset of 10% of the entries in R as a test set (Rtest) and
trained on the remaining 90%. We distinguish between entries in Rtest as opposed to R using
a superscript rtui We chose to remove random entries in R as opposed to random listens so
as avoid the obvious bias that users will tend to revisit the same artists. In other words, we
wanted to avoid a scenario that favored a simple baseline model that always predicted the
items the user already listened to. By removing full entries, the test set consists entirely of
user-item pairs for which the training set has no listening data. The goal of collaborative
filtering is to predict the top new items for a user and not the top items the user has already
interacted with. So, by limiting the test set to new user-item pairs we are able to define an
evaluation metric more inline with the problem we are solving.
For each user u ∈ U we generated a ranked list of the items in I sorted by preference. Let
rankui denote the percentile ranking of item i for user u. rankui = 0% signifies that i is
predicted as the highest recommended item for u. Similarly, rankui = 100% signifies that
i is predicted as the lowest recommended item for u. The percentile ranking is then evenly
distributed among the remaining items in the list by steps of 100%

|I| . Our basic measure of
quality is the expected percentile ranking of a user listening to the artists in the test set,
which can be defined as:

MPR =
∑
ui r

t
uirankui∑
ui r

t
ui

(10)

Lower values of MPR are more desirable as they indicate that the user listened to artists
higher in their predicted lists. Conversely, higher values of MPR indicate that users listened

6

Figure 2: MPR for popularity baseline, IMF, and Logistic MF using streaming count data
for 50k users and the top 10k artists on Spotify

to artists lower in their predicted lists. It should also be noted that randomly produced lists
would have an expected MPR of 50%.

6.3 Results

We evaluated our model using the MPR evaluation metric for a differing number of latent
factors ranging from 5 to 100. We found that increasing the number of latent factors beyond
100 did not improve performance on our dataset. Additionally, we also implemented the
Implicit Matrix Factorization (IMF) model defined in [12] for the same set of varying latent
factors. For both models, we tuned α and λ by cross validation, though in both cases
choosing an α that roughly balanced the positive and negative observations yielded the
best performance. We ran both models until the change in MPR was minimal, which
ultimately amounted to around 10 to 20 iterations for IMF and 30 to 40 iterations for
LogisticMF (depending on the number of latent factors). In addition to these 2 models
we also evaluated against a popularity baseline in which all ranked lists were based on
the globally most popular artists on Spotify over the training period. Since the majority
of users tend to generally listen to the same set of artists, a popularity baseline already
performs quite well on the test set. That said, we feel that music tastes are in general more
personal and niche than movie or television viewing and that a popularity based model
is less applicable in the domain of music than in movies. The most popular movies and
shows tend to have a much wider audience reach than the most popular artists and so we
believe that personalized recommendations are even more important in our domain than
other frequently evaluated domains such as Netflix.
Figure 2 depicts the MPR evaluation for LogisticMF and IMF for a differing number of
latent factors, as well as the popularity baseline. The popularity baseline achieved an MPR
of 14.9% which is already a huge improvement over a purely random model which has an
expected MPR of 50%. Both LogisticMF and IMF eventually converged to a similar MPR
at around 100 latent factors (6.27 for IMF and 5.99 for LogisticMF), both of which were
significant improvements over the popularity baseline. The most noticeable improvement of
LogisticMF to IMF comes from its ability to outperform IMF under a fewer number of latent
factors. For example, in using just 10 latent factors IMF achieved an MPR of 16.9% which
is just above the popularity baseline. On the other hand, LogisticMF achieved an MPR of
8.065%. The ability to perform well using less latent factors is a desirable characteristic for
several reasons.

1. The curse of dimensionality tells us that as we increase the number of latent factors
we will in turn need more training data to effectively learn near optimal vectors. In
situations where we do not have access to a large amount of training data, increasing
the number of latent factors may not yield performance improvements.

7

Daft Punk Bob Dylan Mumford & Sons
LogisticMF IMF LogisticMF IMF LogisticMF IMF
Justice Muse Neil Young Simon & Garfunkel Jerry Douglas Florence and
The Chemical Kings Of Leon Buffalo Springfield The Rolling Stones Ben Howard The Machine
Brothers Gorillaz Lou Reed The Beach Boys The Lumineers MGMT

Fatboy Slim The Killers The Animals David Bowie Noah And The Whale Lana Del Rey
Gorillaz Jay-Z Simon & Garfunkel Neil Young Radical Face The Killers
The Prodigy Foo Fighters Johnny Cash The Cure Of Monsters And Men Kings Of Leon
Deadmau5 MGMT Paul Simon R.E.M. The Tallest Man On Earth Band of Horses
Basement Jaxx Kanye West The Kinks Bruce Springsteen Ray LaMontagne Gotye
Röyksopp Florence and The Velvet Elvis Presley Edward Sharpe & Snow Patrol
Ratatat The Machine Underground Dire Straits The Magnetic Zeros Daft Punk
Moby Coldplay Van Morrison The Shins Foo Fighters

Table 1: Top Related Artists lists sorted by cosine similarity (11) between item vectors.

2. Recommendation features, such as nearest neighbor searches, can be performed
faster and using less memory if using less latent factors. A common practice for
collaborative filtering based recommender systems is to first learn a set of item
vectors and then update user vectors more frequently in an online fashion while
keeping the item vectors static. Recommendations can then be computed in real
time by performing an approximate nearest neighbor (ANN) search over the space
of item vectors in I. ANN search requires keeping a data structure such as a k-d
tree or locality sensitive hashing (LSH) based trees in RAM. The size of these data
structures is proportional to both the number of items as well as the dimensionality
of the latent factor vectors and so reducing the number of latent factors can greatly
reduce the size of these objects.

6.4 Qualitative Analysis

In addition to our quantitative evaluation we also explored a qualitative analysis. One of the
benefits to using latent factor models is that it places all items in I into a lower dimensional
space where we can compute similarities between items. We used cosine similarity to measure
the similarity between item vectors in a latent factor space. Given two vectors a and b the
cosine similarity between the vectors is defined as:

simab =
∑
i aibi√∑

i a
2
i

√∑
i b

2
i

(11)

The top related items for a given item a can be defined as the top items b ∈ I ranked
by simab. We trained both LogisticMF and IMF using the same Spotify listening history
dataset from our quantitative analysis using 60 latent factors. Next, we computed the top
related items for several artists in I using the learned item vectors. Table 1 lists the top
related items for 3 artists for which we feel that LogisticMF qualitatively outperformed IMF,
though we leave it to the reader to have their own opinion.

7 Summary and Discussion

In this paper, we presented a new probabilistic latent factor model for collaborative filtering
with implicit feedback data. Our model is simple to implement, highly scalable, and has
been shown to outperform the widely used IMF model [12] using a dataset composed of
user listening behavior from Spotify. Additionally, our model has the added benefit that it
encodes the probability that a user will prefer an item in the domain of I. At Spotify, we’ve
scaled this model up to 40 million users and 20 million songs and use it to power various
music recommendation features including Discover, Radio, and Related Artists.

References

[1] Bell R & Koren Y. & Volinsky C. (2007) Modeling Relationships at Multiple Scales to Im-
prove Accuracy of Large Recommender Systems Proc. of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining.

8

[2] Bennet J. & Lanning S. (2007) The Netflix Prize KDD Cup and Workshop.

[3] Blei D. & Ng A. & Jordan M. (2003) Latent Dirchlet Allocation Journal of Machine Learning
Research.

[4] Das A. & Mayur D. & Garg A. & Rajaram S. (2007) Google News Personalization: Scalable
Online Collaborative Filtering Proc. of the 16th International Conference on the World Wide Web,
pp. 271-280.

[5] Duchi J. & Hazan E. & Singer Y. (2011) Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization Journal of Machine Learning Research.

[6] Funk S. (2006) Netflix Update: Try this at Home http://sifter.org/ si-
mon/journal/20061211.html.

[7] Gemulla R. & Nijkamp E. & Haas P. & Sismanis Y. (2011) Large Scale Matrix Factorization with
Distributed Stochastic Gradient Descent Proc. of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining.

[8] Goplan P. & Hofman J. & Blei D. (2013) Scalable Recommendation with Poisson Factorization
arXiv preprint arXiv:1311.1704.

[9] Gunawardana A. & Meek C. (2009) A Unified Approach to Building Hybrid Recommender
Systems Proc. of the 3rd ACM Conference on Recommender Systems (RecSys), pp. 117-124.

[10] Herlocker J. & Konstan J. & Borchers A. & Riedl J. (1999) An Algorithmic Framework for
Performing Collaborative Filtering Proc. of the 22nd ACM SIGIR Conference on Information
Retrieval, pp. 230-237.

[11] Hofmann T. (2007) Latent Semantic Models for Collaborative Filtering ACM Transactions on
Information Systems, pp. 89-115.

[12] Hu Y. & Koren Y. & Volinsky C. (2008) Collaborative Filtering for Implicit Feedback Datasets
8th IEEE International Conference on Data Mining, pp. 263-272.

[13] Karatzoglou A. & Amatriain X. & Baltrunas L. & Oliver N. (2010) Multiverse Recommendation:
N-dimensional Tensor Factorization for Context Aware Collaborative Filtering Proc. of the 4th
ACM Conference on Recommender Systems (RecSys), pp. 79-86.

[14] Koren Y. (2009) Collaborative Filtering with Temporal Dynamics Proc. of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining.

[15] Linden G. & Smith B. & York J. (2003) Amazon.com Recommendations: Item to Item Col-
laborative Filtering IEEE Internet Computing, pp. 76-80.

[16] Mnih A. & Yee W. (2011) Learning Item Trees for Probabilistic Modeling of Implicit Feedback
CoRR.

[17] Oard D. & Kim J. (1998) Implicit Feedback for Recommender Systems Proc. of the 5th DELOS
Workshop on Filtering and Collaborative Filtering, pp. 31-36.

[18] Pan R. & Zhou Y. & Cao B. & Liu N. & Lukose R. & Scholz M. & Yang Z. (2008) One Class
Collaborative Filtering IEEE International Conference on Machine Learning, pp. 502-511.

[19] Recht B. & Re C. (2013) Parallel Stochastic Gradient Algorithms for Large Scale Matrix
Completion Mathematical Programming Computation, pp. 201-226.

[20] Salakhutdinov R. & Mnih A. (2007) Probabilistic Matrix Factorization i �Advances in Neural
Information Processing Systems (NIPS).

[21] Salakhutdinov R. & Mnih A. & Hinton G. (2007) Restricted Boltzmann Machines for Collab-
orative Filtering International Conference on Machine Learning (ICML).

[22] Sarwar B. & Karypis G. & Konstan J. & Ridel J. (2001) Item Based Collaborative Filtering
Recommendation Algorithms Proc. of the 10th International Conference on the World Wide Web,
pp. 285-295.

[23] Yu H. & Hsieh C. & Si S. & Dhillon I. (2012) Scalable Coordinate Descent Approaches to
Parallel Matrix Factorization for Recommender Systems IEEE International Conference on Data
Mining.

[24] Zhou Y. & Wilkinson D. & Schreiber R. & Pan R. (2008) Large Scale Parallel Collaborative
Filtering for the Netflix Prize AAIM, pp. 337-348.

9

	Introduction
	Problem Setup and Notation
	Related Work
	Logistic MF
	Scaling Up
	Experimental Study
	Dataset
	Evaluation Metric
	Results
	Qualitative Analysis

	Summary and Discussion

