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Department of Computer Engineering
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1 Partial Derivatives with respect to Zα

The optimization problem is minimization of the following objective

minimize D(X1:Nx ||X̂1:Nx)

where the divergence function is separable for each observed tensor element as

D(X1:Nx ||X̂1:Nx) =
∑
ν

Dν(Xν ||X̂ν)

and each divergence is separable as the sum of scalar divergences d(x||µ) as

Dν(Xν ||X̂ν) =
∑
uν

dν(Xν(uν)||X̂ν(uν))

The optimization problem can be solved by various approaches. All of these requires us evaluating
the gradient with respect to the individual tensor elements Zα(vα) and model output tensors X̂ν . In
the general form the derivative of the β divergence with respect to the second parameter is

∂dp(x||x̂)

∂x̂
= −xx̂−p + x̂1−p =

x̂− x
x̂p

Typically in each iteration of an optimization procedure, we need to calculate the following deriva-
tive to update each model output tensor X̂ν :

∂dpν (Xν(uν); X̂ν(uν))

∂X̂ν(uν)
= − Xν(uν)

X̂ν(uν)pν
+ X̂ν(uν)1−pν =

X̂ν(uν)−Xν(uν)

X̂ν(uν)pν
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Next each latent factor of the decomposition model is updated by the following derivative

∂D(X1:N ; X̂1:N )

∂Zα(vα)
=
∑
ν

1

φν

∑
uν

∂dpν (Xν(uν); X̂ν(uν))

∂X̂ν(uν)

∂X̂ν(uν)

∂Zα(vα)

=
∑
ν

[
R(ν, α)

1

φν

∑
v̄α

(
X̂ν(uν)−Xν(uν)

X̂ν(uν)pν

) ∏
α′ 6=α

Zα′(vα′)
R(ν,α)

]
(1)

2 Algorithm Summary

Algorithm 1: Overview of the proposed method for coupled tensor factorization.
Input: Observed tensors: X1, X2, . . . , XNx Coupling matrix: R
Output: Latent factors: Z1:Nz , Dispersions: φ1:Nx , Power parameters: p1:Nx

Randomly initialize Z(0)
1:Nz

, φ(0)
1:Nx

, p(0)
1:Nx

and set i = 1
// Estimate the latent factors
while not converged and i ≤ MaxIter do

// Run DIGD until convergence
while not converged do

Pick a step size η
while all blocks are not processed do

Form a stratum σ (implicitly determined by the transfer schedule of the blocks)
for each block γ in σ do in parallel

Load the corresponding block of Xν

Run IGD on block γ with step size η
// Update the local factors first, then update the shared

factors
Update all Zα(vα) with vα ∈ BI(Iα, γ) by using Xν(uν) in uν ∈ BI(I0,ν , γ)

end
Pass the shared factor block to another node (will determine the next σ)

end
end
// Estimate the dispersion and power parameters
while all blocks are not processed do

Form a stratum σ (implicitly determined by the transfer schedule of the blocks)
for each block γ in σ do in parallel

Load the corresponding block of Xν

Compute the related parts of the output tensors at each node:

X̂
(i)
ν (uν) =

∑
ūν

∏
α Z

(i)
α (vα)R(ν,α) for all ν ∈ [Nx], uν ∈ BI(I0,ν , γ)

Compute the related part of the dispersion updates and likelihoods for the grid search
end
Pass the shared factor block to another node (will determine the next σ)

end
Send the intermediate dispersion updates and the likelihoods to the responsible node of the site
The responsible nodes aggregate the results and compute the new φν and pν :

φ
(i)
ν = arg maxφ log

(
P(Xν |φ, X̂(i)

ν , p(i−1))P(φ)
)

for all ν ∈ [Nx]

p
(i)
ν = arg maxp logP(Xν |X̂(i)

ν , φ
(i)
ν , p) for all ν ∈ [Nx]

The responsible nodes broadcast the new φν and pν to the relevant nodes
i← i+ 1

end
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3 Exponential Dispersion Models and the Tweedie Family

An exponential dispersion model (EDM) can be defined by a two parameter density as follows [1]:

P(x; θ, φ) = h(x, φ) exp

{
1

φ
(θx− κ(θ))

}
(2)

where θ is the canonical parameter, φ is the dispersion parameter and κ is the cumulant (log-
partition) function ensuring normalization. Here, h(x, φ) is the base measure and is independent of
the canonical parameter.

EDMs are a studied in particular as the response distribution of the generalized linear models [2].
For an EDM, we can verify that the mean x̂ and the variance Var{x} are obtained directly by
differentiating κ(·):

κ′(θ) = 〈x〉p(x;θ,φ) ≡ x̂, κ′′(θ) =
1

φ
Var{x} ≡ v(x̂).

Here v(x̂) is also known as the variance function [3, 1].

In this paper, we focus on a particular EDM, namely The Tweedie family T Wp(x; x̂, φ). Tweedie
distributions specify the variance function as v(x̂) = x̂p [1]. The variance function is related to
the p’th power of the mean, therefore it is called a power variance function. Note that this choice
directly dictates the form of x̂ and κ(θ) that can be solved as

x̂(θ) =

{
1

2−p ((1− p)θ)
1

1−p p 6= 1

exp(θ) p = 1
(3)

κ(θ) =


1

2−p ((1− p)θ)
2−p
1−p p 6= 1, 2

− log(−θ) p = 2
exp(θ) p = 1

. (4)

Here, different choices for p yield well-known important distributions such as the Gaussian (p = 0),
Poisson (p = 1), compound Poisson (1 < p < 2), Gamma (p = 2) and inverse Gaussian (p = 3)
distributions. Excluding the interval 0 < p < 1 for which no EDM exists, for all other values of p
not mentioned above, one obtains Tweedie stable distributions [1].

For p ∈ {0, 1, 2, 3} the densities are given as follows:

T W0(x; x̂, φ) = (2πφ)−
1
2 exp

(
− 1

φ

(x− x̂)2

2

)
(5)

T W1(x; x̂, φ) =
(x̄/φ)

x̄
φ

e
x̄
φΓ( x̄φ + 1)

exp

(
− 1

φ
(x̄ log

x̄
¯̂x
− x̄+ ¯̂x)

)
(6)

T W2(x; x̂, φ) =
1

Γ( 1
φ )(eφ)

1
φx

exp

(
− 1

φ
(
x

x̂
− log

x

x̂
− 1)

)
(7)

T W3(x; x̂, φ) = (2πx3φ)−
1
2 exp

(
− 1

φ

(x− x̂)2

2xx̂2

)
. (8)

Note that, the Poisson distribution in its well-known form, is an exponential dispersion model with
unitary dispersion (φ = 1). This distribution is called over-dispersed (φ > 1) or under-dispersed
(φ < 1) when the nominal variance is not sufficient to determine the variance of the observations
[2]. When we introduce a dispersion parameter to the Poisson distribution, the domain of the prob-
ability distribution is re-defined on the integer multiples of φ: x̄ ∈ {0, φ, 2φ, 3φ, . . . }. This can be
interpreted as the data are scaled by φ at each iteration.

For the remaining cases of p, the probability density functions cannot be written in closed-form
analytical forms. However, they can be expressed as infinite series that is defined as follows: [1]

T Wp(x; x̂, φ) =
1

xξp

( ∞∑
k=1

Vk

)
exp

{
1

φ

(
x̂1−px

1− p
− x̂2−p

2− p

)}
(9)
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and ξp = 1 for p ∈ (1, 2) and ξp = π otherwise.

The Tweedie density with p ∈ (1, 2) coincides with the compound Poisson distribution [1]. The
compound Poisson distribution has a support for continuous positive data and a discrete probability
mass at zero. For x = 0, the density function is defined as T Wp(x; ·) = exp(x̂2−p/(φ(p− 2))) and
for x > 0, it follows the form of Equation 9, where the terms Vk for this distribution is defined as
follows:

Vk =
x−kα(p− 1)kαφk(α−1)

(2− p)kΓ(k + 1)Γ(−kα)
(10)

where α = (2− p)/(1− p).

The cases p < 0 and p > 2 of the Tweedie class correspond to Tweedie stable distributions. For the
Tweedie models with p < 0 and p > 2, the terms Vk are defined as follows:

Vk =
Γ(1 + k

α )φ
k
p−2 (−1)k sin(kπα )

Γ(k + 1)(1− p)k(2− p)− kαx−k
, Vk =

Γ(1 + αk)φk(1−α)(−1)k sin(−kπα)

Γ(k + 1)(p− 1)−αk(p− 2)kxαk
(11)
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