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“Since no paradigm ever solves all the problems it defines and since no two paradigms leave
all the same problems unsolved, paradigm debates always involve the question: Which
problems is it more significant to have solved?”

Thomas S. Kuhn, The Structure of Scientific Revolutions (1962)

Extended Abstract

There is no shortage of clustering algorithms, and recently a new wave of excitement has spread
across the machine learning community mainly because of the important development of spectral
methods. At the same time, there is also growing interest around fundamental questions pertaining
to the very nature of the clustering problem (see, e.g., [17, 1, 28]). Yet, despite the tremendous
progress in the field, the clustering problem remains elusive and a satisfactory answer even to the
most basic questions is still to come.

Upon scrutinizing the relevant literature on the subject, it becomes apparent that the vast majority of
the existing approaches deal with a very specific version of the problem, which asks for partitioning
the input data into coherent classes. In fact, almost invariably, the problem of clustering is defined as
a partitioning problem, and even the classical distinction between hierarchical and partitional algo-
rithms [15] seems to suggest the idea that partitioning data is, in essence, what clustering is all about
(as hierarchies are but nested partitions). This is unfortunate, because it has drawn the community’s
attention away from different, and more general, variants of the problem and has led people to ne-
glect underdeveloped foundational issues. As J. Hartigan clearly put it more than a decade ago: “We
pay too much attention to the details of algorithms. [...] We must begin to subordinate engineering
to philosophy.” [10, p. 3].

The partitional paradigm (as I will call it, following Kuhn) is attractive as it leads to elegant mathe-
matical and algorithmic treatments and allows us to employ powerful ideas from such sophisticated
fields as linear algebra, graph theory, optimization, statistics, information theory, etc. However, there
are several (far too often neglected) reasons for feeling uncomfortable with this oversimplified for-
mulation. Probably the best-known limitation of the partitional approach is the typical (algorithmic)
requirement that the number of clusters be known in advance, but there is more than that.

To begin, the very idea of a partition implies that all the input data will have to get assigned to some
class. This subsumes the old philosophical view which gives categories an a priori ontological
status, namely that they exist independent of human experience, a view which has now been dis-
credited by cognitive scientists, linguists, philosophers, and machine learning researchers alike (see,
e.g., [18, 7, 9]). Further, there are various applications for which it makes little sense to force all data
items to belong to some group, a process which might result either in poorly-coherent clusters or in
the creation of extra spurious classes. As an extreme example, consider the classical figure/ground
separation problem in computer vision which asks for extracting a coherent region (the figure) from
a noisy background [12, 23]. It is clear that, due to their intrinsic nature, partitional algorithms have
no chance of satisfactorily solving this problem, being, as they are, explicitly designed to partition
all the input data, and hence the unstructured clutter items too, into coherent groups. More recently,
motivated by practical applications arising in document retrieval and bioinformatics, a conceptu-
ally identical problem has attracted some attention within the machine learning community and is
generally known under the name of one-class clustering [8, 5].
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The second intrinsic limitation of the partitional paradigm is even more severe as it imposes that
each element cannot belong to more than one cluster. There are a variety of important applications,
however, where this requirement is too restrictive. Examples abound and include, e.g., cluster-
ing micro-array gene expression data (wherein a gene often participate in more than one process),
clustering documents into topic categories, perceptual grouping, and segmentation of images with
transparent surfaces. In fact, the importance of dealing with overlapping clusters has been recog-
nized long ago [16] and recently, in the machine learning community, there has been a renewed
interest around this problem [3, 11]. Typically, this is solved by relaxing the constraints imposed by
crisp partitions in such a way as to have “soft” boundaries between clusters.

Finally, I would like to mention another limitation of current state-of-the-art approaches to cluster-
ing which, admittedly, is not caused in any direct way by the partitioning assumption but, rather,
by the intrinsic nature of the technical tools typically used to attack the problem. This is the sym-
metry assumption, namely the requirement that the similarities between the data being clustered
be symmetric (and non-negative). Indeed, since Tversky’s classical work [26], it is widely recog-
nized by psychologists that similarity is an asymmetric relation. Further, there are many practical
applications where asymmetric (or, more generally, non-metric) similarities do arise quite naturally.
For example, such (dis)similarity measures are typically derived when images, shapes or sequences
are aligned in a template matching process. In image and video processing, these measures are
preferred in the presence of partially occluded objects [14]. Other examples include pairwise struc-
tural alignments of proteins that focus on local similarity [2], variants of the Hausdorff distance [6],
normalized edit-distances, and probabilistic measures such as the Kullback-Leibler divergence. A
common method to deal with asymmetric affinities is simply to symmetrize them, but in so doing
we might lose important information that reside in the asymmetry. As argued in [14], the violation
of metricity is often not an artifact of poor choice of features or algorithms, but it is inherent in the
problem of robust matching when different parts of objects (shapes) are matched to different images.
The same argument may hold for any type of local alignments. Corrections or simplifications of the
original affinity matrix may therefore destroy essential information.

Although probabilistic model-based approaches do not suffer from several of the limitations men-
tioned above, here I will suggest an alternative strategy. Instead of insisting on the idea of determin-
ing a partition of the input data, and hence obtaining the clusters as a by-product of the partitioning
process, in this presentation I propose to reverse the terms of the problem and attempt instead to de-
rive a rigorous formulation of the very notion of a cluster. Clearly, the conceptual question “what is
a cluster?” is as hopeless, in its full generality, as is its companion “what is an optimal clustering?”
which has dominated the literature in the past few decades, both being two sides of the same coin.
An attempt to answer the former question, however, besides shedding fresh light into the nature of
the clustering problem, would allow us, as a consequence, to naturally overcome the major limita-
tions of the partitional approach alluded to above, and to deal with more general problems where,
e.g., clusters may overlap and clutter elements may get unassigned, thereby hopefully reducing the
gap between theory and practice.

In our endeavor to provide an answer to the question raised above, we found that game theory
offers a very elegant and general perspective that serves well our purposes. Hence, in the second,
constructive part of the presentation I will describe a game-theoretic framework for clustering [21,
25, 22] which has found applications in fields as diverse as computer vision and bioinformatics.
The starting point is the elementary observation that a “cluster” may be informally defined as a
maximally coherent set of data items, i.e., as a subset of the input data C which satisfies both an
internal criterion (all elements belonging to C should be highly similar to each other) and an external
one (no larger cluster should contain C as a proper subset). We then formulate the clustering problem
as a non-cooperative clustering game. Within this context, the notion of a cluster turns out to be
equivalent to a classical equilibrium concept from (evolutionary) game theory, as the latter reflects
both the internal and external cluster conditions mentioned above.

Evolutionary game theory originated in the early 1970’s as an attempt to apply the principles and
tools of game theory to biological contexts, with a view to model the evolution of animal, as opposed
to human, behavior (see the classical work by J. Maynard Smith [19] who pioneered the field). It
considers an idealized scenario whereby pairs of individuals are repeatedly drawn at random from a
large, ideally infinite, population to play a symmetric two-player game. In contrast to conventional
game theory, here players are not supposed to behave rationally or to have complete knowledge
of the details of the game. They act instead according to an inherited behavioral pattern, or pure
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strategy, and it is supposed that some evolutionary selection process operates over time on the dis-
tribution of behaviors. Economists and social scientists have soon recognized the advantages of this
new branch of game theory, as it allows one to elegantly get rid of the much-debated assumptions
underlying the traditional approach, concerning the full rationality and complete knowledge of play-
ers. It also offered a dynamical perspective to game theory, an element which was totally missing in
the classical theory, and provided new tools to deal with the equilibrium selection problem (namely,
to explain reasons for players of a game to choose a certain equilibrium over another). Nowadays,
evolutionary game theory is a well-established field on its own and has become one of the most
active and rapidly growing areas in economics and social sciences. We refer the reader to [13, 27]
for classical introductions to this rapidly expanding field. A central concept in evolutionary game
theory is the notion of an evolutionary stable strategy (ESS), which is essentially a Nash equilibrium
satisfying an additional stability property which guarantees that if an ESS is established in a popu-
lation, and if a small proportion of the population adopts some mutant behavior, then the selection
process will eventually drive them to extinction.

Now, to get back to our problem, the (pairwise) clustering problem can be formulated as the follow-
ing (two-player) game. Assume a pre-existing set of objects O and a (possibly asymmetric and even
negative) matrix of affinities A between the elements of O. Two players with complete knowledge
of the setup play by simultaneously selecting an element of O. After both have shown their choice,
each player receives a payoff, monetary or otherwise, proportional to the affinity that the chosen ele-
ment has with respect to the element chosen by the opponent. Clearly, it is in each player’s interest to
pick an element that is strongly supported by the elements that the adversary is likely to choose. As
an example, let us assume that our clustering problem is one of figure/ground discrimination, that is,
the objects in O consist of a cohesive group with high mutual affinity (figure) and of non-structured
noise (ground). Being non-structured, the noise gives equal average affinity to elements of the fig-
ures as to elements of the ground. Informally, assuming no prior knowledge of the inclination of the
adversary, a player will be better-off selecting elements of the figure rather than of the ground.

Within this framework, clusters correspond to the ESS’s of our non-cooperative game. The hypothe-
ses that each object belongs to a cluster compete with one-another, each obtaining support from
compatible edges and competitive pressure from the others. Competition will reduce the popula-
tion of individuals that assume weakly supported hypotheses, while allowing populations assuming
hypotheses with strong support to thrive. Eventually, all inconsistent hypotheses will be driven to
extinction, while all the surviving ones will reach an equilibrium whereby they will all receive the
same average support, hence exhibiting the internal coherency characterizing a cluster As for the
extinct hypotheses, they will provably have a lower support, thereby hinting to external incoherency.
The stable strategies can be found using replicator dynamics, a classic formalization of a natural
selection process [27, 13].

In a nutshell, our game-theoretic perspective has the following attractive features:

1. it makes no assumption on the underlying (individual) data representation: like spectral
(and, more generally, graph-based) clustering, it does not require that the elements to be
clustered be represented as points in a vector space;

2. it makes no assumption on the structure of the affinity matrix, being it able to work with
asymmetric and even negative similarity functions alike;

3. it does not require a priori knowledge on the number of clusters (since it extracts them
sequentially);

4. it leaves clutter elements unassigned (useful, e.g., in figure/ground separation or one-class
clustering problems)

5. it allows extracting overlapping clusters [24];

6. it generalizes naturally to hypergraph clustering problems, i.e., in the presence of high-
order affinities [22], in which case the clustering game is played by more than two players.

The approach outlined above is but one example of using purely game-theoretic concepts to model
generic machine learning problems (see [4] for another such example in a totally different context),
and the potential of game theory to machine learning is yet to be fully explored. Other areas where
game theory could potentially offer a fresh and powerful perspective include, e.g., semi-supervised
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learning, multi-similarity learning, multi-task learning, learning with incomplete information, learn-
ing with context-dependent similarities. The concomitant increasing interest around the algorithmic
aspects of game theory [20] is certainly beneficial in this respect, as it will allow useful cross-
fertilization of ideas.
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[22] S. Rota Bulò and M. Pelillo. A game-theoretic approach to hypergraph clustering. NIPS 2009.
[23] A. Shashua and S. Ullman. Structural saliency: The detection of globally salient features using a locally

connected network. ICCV 1988.
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