
CME 323: Distributed Algorithms and Optimization, Spring 2015

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Databricks and Stanford.

Lecture 9, 4/27/2015. Scribed by Emilien Dupont, Arzav Jain, William Zhang.

9 More on Matrix Computations

9.1 Distributed Singular Value Decomposition

The previous lecture covered various ways to distribute a matrix across multiple machines:

• by entries (CoordinateMatrix)

• by rows (RowMatrix)

• by blocks (BlockMatrix)

For this topic, the distribution method matters little, so long as matrix multiplication is defined

for the said method. Given a matrix A of size m× n, we would like to compute its singular value

decomposition:

A = UΣV T (1)

where U is m× k, UTU = I, Σ is k × k diagonal with non zero entries, V is k × n, V TV = I.

We distinguish between two cases on the structure of A:

• A is tall and skinny (i.e. m� n)

• A is roughly square (i.e. m ≈ n)

Note: the case “short and fat” is essentially the same as “tall and skinny”, since we can go

from one to the other via matrix transposition.

9.1.1 Tall and skinny

In addition to m� n, we also assume that n2 is small enough to fit on a single machine, and that

k is small (in many practical uses, k will be on the order of 10). Using the notation as in 1, we see

that Σ and V are small enough to fit on a single machine, whereas U needs to be distributed. To

compute the SVD, we proceed as follows:

1. We compute ATA. This matrix is n × n, which is significantly smaller than the size of A.

Although this presents certain computational benefits in subsequent steps, it is important to

note that ATA is usually dense, and not trivial to compute given the dimensions of A. This

step requires an all-to-all communication.

1

http://stanford.edu/~rezab/dao

2. Using 1, we have: ATA = V Σ2V T . We then compute the SVD for ATA, which gives us Σ2

and V . Given that the entries in Σ are non-negative, retrieving Σ from Σ2 is simple (take the

square roots of the diagonal entries).

3. We can now also obtain U :

A = UΣV T ⇒ AV = UΣ⇒ AV Σ−1 = U

Since U is distributed, computations need to be organized efficiently. Given that V and Σ are both

local matrices, V Σ−1 can (and should) be computed locally. Then all that is left to obtain U is a

pre-multiplication by A, which is distributed. As such, we broadcast V Σ−1 to all machines.

This whole procedure only requires a single all-to-all communication (during step 1).

Note: computing ATA is generally ill-advised as the condition number of the matrix is squared,

which may cause numerical instability (i.e. the smaller singular values will be inaccurate for poorly

conditioned matrices). However, in most practical applications, only a few of the largest singular

values are sought after.

9.1.2 Square SVD

For a roughly square matrix (m ' n) we cannot fit n2 entries on one machine. Therefore, a new

approach must to be used.

First we note that for a Symmetric Positive Semi-Definite (SPD) matrix, the eigenvalue decom-

position and the SVD coincide. Since ATA is SPD we can use its eigenvalue decomposition to find

its SVD and so the SVD of A. To do this we use ARPACK; a Fortran77 package that computes

eigenvalue decompositions using Krylov Subspace methods. This package is available in Java and

therefore also in Scala and Spark.

The advantage of using ARPACK is that it only needs to take vectors as inputs, which we assume

fit in memory on one machine. So assuming we want to determine the eigenvalue decomposition

of some matrix A of dimension m × n, ARPACK provides the user with a vector b of dimension

n× 1. We then need to compute product Ab and return this vector to ARPACK. Repeated matrix

multiplication will then yield the first k eigenvalues and eigenvectors.

Now, even though b fits on one machine, the matrix A does not. So we need to distribute the

Matrix-Vector multiplication Ab. To do this we broadcast b and distribute A and perform the

Matrix-Vector multiplication in parallel.

In our case, we want to determine the SVD of A so we compute the eigenvalue decomposition

of ATA. To use ARPACK we will then need to compute the product ATAb for some b. To do this,

1. Broadcast b and compute x = Ab

2. Broadcast x and compute y = ATx

3. Store y

2

We can repeat this procedure until we have a sufficient number of vectors so that ARPACK can

compute the k largest eigenvalues of ATA on one machine. From this we compute the SVD of A

as before.

Note: The typical maximum dimensions for which this procedure is possible would be e.g.

b = 106 and A = 106 × 106. We however do require that k × n values fit on one machine. Indeed,

the driver will need to hold k vectors each of size n to use ARPACK, which must be run locally.

9.2 Optimization Example: Gradient Descent

9.2.1 Scaling Gradient Descent

The most common algorithm to optimize machine learning objective functions is Gradient Descent.

For a given weight vector w, learning parameter α, and gradient g, the update equation is as follows:

w ← w − α ·
n∑

i=1

g(w;xi, yi)

In a distributed setting, we have to worry about scaling the algorithm along three different

verticals:

1. Data Size: this is the case when n is large.

2. Model Size: this is the case when w is of a very high dimension, and has to be manipulated

as an RDD.

3. Number of Models: there are many common cases today when a large number of models

(either different models or the same model with many different hyperparameters) need to be

trained. This can be easily done in parallel and are not considered here.

9.2.2 Data Scaling

Scaling to the number of examples n in our dataset is achieved by storing the dataset as an RDD.

This is done below in Line 1. We then initialize w to be an in-memory vector of zeros and perform

iterations of gradient descent. In each iteration, we compute the sum of the gradients over all

data points p.x and update w according to the update equation. For futher details, please refer to

Lecture 2.

1 val po in t s = spark . t e x t F i l e (. . .) . map(parsePoint) . cache ()

2 var w = Vector . z e r o s (d)

3 for (i <− 1 to numIterat ions) {
4 val grad i ent = po in t s . map { p =>

5 (1 / (1 + exp(−p . y ∗ w. dot (p . x))) − 1) ∗ p . y ∗ p . x

6 } . reduce (+)

7 w −= alpha ∗ grad i ent

8 }

3

9.2.3 Model Scaling

We now consider scaling the above algorithm when w ∈ <d and d is too large to fit w in memory.

Note that this means p.x ∈ <d and also can’t fit in memory. Let A be the matrix representing the

data set such that each row of A is p.x.

Line 1 Since each data point represents a row in the data matrix A and is too large to fit in memory,

each line in the input text file will be too long for memory and calling textFile() crashes the

code. To get around this, we assume that the input matrix A is stored in text files in Block

Matrix form so each line in the text file represents the row of a block, which can indeed fit in

memory.

Line 2 Instead of creating an in-memory vector, we initialize a RDD of type Double to be w.

Line 5 In order to compute w.dot(p.x), we simply perform a distributed Matrix-Vector multiplication

of Aw. This is discussed in detail in Lecture 8. Each element of Aw is then mapped to get

the value of the expression:

[
1

(1 + exp(−p.y ∗ w · p.x))
− 1

]
∗ p.y

This value is then multiplied with the corresponding row of A, i.e. p.x, to give a vector.

These vectors are summed up to give the final gradient, which is further multiplied with α

and subtracted from w. Note that this only works because we are dealing with a linear ML

model whose gradient involves a dot product.

4

	9 More on Matrix Computations
	9.1 Distributed Singular Value Decomposition
	9.1.1 Tall and skinny
	9.1.2 Square SVD

	9.2 Optimization Example: Gradient Descent
	9.2.1 Scaling Gradient Descent
	9.2.2 Data Scaling
	9.2.3 Model Scaling

