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16 Complexity measures for MapReduce

During a MapReduce algorithm, three main stages are involved while computing the complexity.

First, all of the map tasks have to finish. Second, all of the pairs which need to be on the same

machine need to be shuffled. Finally, reducers take some time to finish. As a consequence, we will

provide three complexity time measures corresponding to these three stages:

• Mappers cost time: the time the map phase takes. All the mappers have to do their

computations and spit out the pairs (this is embarrassingly parallel work, so we can use the

same analysis tools that we know for a single processor computation and take the worst one).

• Shuffle cost time: number of items the mappers output to be sorted: how many tuples

have to be sorted. Note that although the keys are hashable, you can not just assume that

the sort time will be O(n) as in practice, a more complex analysis involving the number of

machines and the architecture would have to be done.

• Reducers cost time: how long it takes for the slowest reducer to finish.

Any of these measures could be the bottleneck of the overall analysis of a MapReduce algorithm.

17 Triangle Counting

For this part, assume that we are given an undirected graph G(V,E) in the edge-list format, i.e.

a giant data set of (u, v) pairs, split across machines. Let’s make the following assumption: the

number of nodes of G fits in memory. For example, n ' 10 · 106. However, the number of edges

m ' n2 (for a dense graph) does not fit in memory. As a consequence, the node data structure can

be thought as a “local array”, whereas the edge data structure can be thought of as an “RDD”.

Goal: Counting the number of triangles in the graph within a MapReduce implementation.

17.1 Triangle counting on a single machine

First, let us derive a sequential algorithm to count every triangle of our graph G in a sequential

way. Let us use the adjacency matrix A of the graph: A = (aij) where

aij =


1 if (i,j)∈ E

0 otherwise
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Then, it is well known that the global coefficient [Ak]ij for k ∈ N counts the number of paths of

length k in G, starting at i and ending at j. In particular ∀i ∈ V , [A3]ii counts the number of

paths starting at i and ending at i of length 3, i.e. the number of triangles containing i as a vertex.

To avoid overcounting, we need to divide
∑

i[A
3]ii by a factor of 6: indeed a single triangle will be

counted 2∗3 = 6 times. The factor 2 comes from the fact that the triangle (u, v, w) can be traveled

as u → v → w → u or u → w → v → u.

What is the time complexity? We know that we can compute A3 in O(nω) with ω ' 2.373, but

this algorithm cannot be distributed. Likewise with Strassen’s algorithm where ω ' 2.8, it can not

be adapted to a cluster because it would need to send giant submatrices of data across machines.

As a general idea, it can be noted that recursive algorithms are not as useful for clusters as they

are for the PRAM model.

17.2 Triangle counting on a cluster: the Node Iterator Algorithm

So let us do something simpler for the distributed case. Note that if the graph is sparse, even on

a sequential machine you would want to do better than O(n2.373). The idea of the Node Iterator

Algorithm is the following: given our graph G(V,E), one needs to iterate through each vertex v ∈ V

to find its neighborhood Γ(v). Then, for all u,w ∈ Γ(v), check if (u,w) is in E. If it is the case,

then we have found a legitimate triangle, and an accumulator variable T can be incremented.

Algorithm 1 NodeIterator(G(V,E))

1: procedure NodeIterator

2: T← 0

3: for v ∈ V do

4: for u ∈ Γ(v) do

5: for w ∈ Γ(v) do

6: if (u,w) ∈ E then

7: T := T + 1
6

8: end if

9: end for

10: end for

11: end forreturn T

12: end procedure

Let us consider the time complexity of this algorithm: On a sequential machine, it is at most

O(n3) (if the graph is dense for example, there are at most O(n3) triangles). But here, we would

like to exploit sparsity, i.e. to rewrite this complexity as a function of m. Now let’s say that the

graph is sparse with m edges. Let’s say there is a high degree node v, which means that v is roughly

connected to all the other nodes. (v is very popular). Suppose:

d(v) > cn where c < 1

Then, the runtime is going to be Ω(n2). Actually, it will take Ω(n2) time just for that single node

v.
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Let’s now implement this algorithm in a MapReduce environment.

18 Implementing the Node Iterator Algorithm in MapReduce

The Node Iterator algorithm can be implemented in two MapReduce steps.

18.1 Compute neighborhoods

Recall that we are given an edge list, but that the algorithm requires a list of neighbors for each

node in order to iterate over.

Neighborhood collection can be performed in a straightforward MapReduce step, with mappers

emitting the first element of the edge (u, v) as the key and the reducers collecting the neighborhoods

{v1, v2, ..., vn} corresponding to each key u. This leaves us with an RDD[(Int, Array[Int])] object.

Note that each list of neighbors is of size at most n, meaning that by assumption it fits in

memory as is required for individual elements of RDDs. Note as well that in Spark, we could

implement this operation using groupByKey.

18.2 Count triangles

The key to accomplishing the counting step in a single MapReduce step is observing that we need

the edges to search for and the actual edges in the graph both available to the reducer to perform

the lookup for whether given triangles exist.

We can do this by having mappers (a) loop over all neighbors u and w for each node v ∈ V and

output key-value pairs [(u, w), “to check”] and (b) traverse the edge list and output the pairs [(v1,

v2), “present edge”]. That is to say the keys are edges and the values are whether the particular

edge is being searched for or represents the actual edges in the graph.

The reducer then has access to, for each edge, a list consisting of zero or more “to check” strings

and zero or one “present edge” strings. If there exists a “present edge” string in the list, then the

reducer sums the number of “to check” strings it finds, as each represents a discovered triange.

Otherwise, that edge either doesn’t exist in the graph or wouldn’t complete a triangle. Note that

the sum, keeping in line with the algorithm, would be divided by six to avoid counting triangles

multiple times.

19 Complexity Analysis of MapReduce Algorithm

We focus on the second step of the algorithm and leave an analysis of the first step to the reader.

Recall that analyzing the runtime of a MapReduce operation requires going over each phase:

map, shuffle, and reduce.

1. Map Phase: The time to process a single neighborhood is O(n2), with the upper bound

coming from a node with O(n) neighbors.
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2. Shuffle Size: The map phase emits Ω(n2 + m) objects in the case of a single dense node

with O(n) neighbors. In a dense graph, each node has O(n) neighbors and the shuffle size is

O(n3 + m).

Note that we only consider the shuffle size here, not the cost of the actual shuffle. Partly, this

is because we can achieve a linear time sort due to the hashable objects being sorted, albeit

with a high constant factor. In addition, the sorting algorithm’s asymptotic performance can

vary by implementation, while shuffle size is independent of those concerns.

3. Reduce Phase: Processing a list of “to check” and “present edge” strings is O(n) in the

case that each endpoint of the edge (v1, v2) is connected to O(n) other nodes.

20 Improving the Node Iterator Algorithm

Even if the above algorithm were O(n2) rather than O(n3), it still would not be good enough to

work with large graphs. For example, if n = 10 million, n2 = 100 trillion. Ideally, we’d like a

dependence on m instead, especially when the graph is sparse.

To get there, we combine two insights. The first is that the driver of high costs is nodes with

large neighborhoods, which then have to output all pairs of nodes in the neighborhood. The second

is that our current algorithm is substantially overcounting triangles by starting its search from each

endpoint of the triangle. For example, given a triangle with endpoints a, b, and c, the algorithm

will detect that b and c are in the neighborhood of a, a and c are in the neighborhood of b, and a

and b are in the neighborhood of c.

We address each of these shortcomings by pursuing a strategy to only search for a given triangle

T in the neighborhood of its least-degree node. To do this, create a total ordering on nodes by

degree (i.e. break ties in some way) and remove all nodes from the neighborhood of a node v with

a lower degree than v.

By construction, this leaves us with a set of neighborhoods Γ∗(v) where each node v is only

neighbors with higher-degree nodes. It is now apparent that when searching for triangles by looping

over these neighborhoods instead, triangles will only be found from the neighborhood of the least-

degree node as we wanted.

It turns out that this approach yields a runtime of O(m3/2).

Formally, let � be a total order on all vertices such that u � v if and only if deg(u) > deg(v),

with ties broken arbitrarily but consistently. How ties are broken is not particularly important

as long as the ordering remains consistent between runs. We can use this ordering to reduce the

amount of over-counting and therefore work done by NodeIterator.

Define the modified neighborhood of v, Γ∗(v), as {u ∈ Γ(v) | u � v}. Roughly speaking, this is

the set of neighbors of v with higher degree than v, and we can use these modified neighborhoods

when counting triangles so that only the lowest degree node in each triangle ‘counts’ the triangle.

Then, instead of counting each triangle 6 times we only count each triangle twice.
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Algorithm 2 NodeIterator++(V,E)

1: T ← 0

2: for v ∈ V do

3: for u ∈ Γ∗(v) do

4: for w ∈ Γ∗(v) do

5: if (u,w)∈ E then TT+1
2

6: end if

7: end for

8: end for

9: end for

10: return T

If we fix a arbitrary number t > 0 , the complexity of this algorithm is upper bounded by∑
v∈V

(
deg(v)

2

)
=

∑
v∈V,deg(v)≥t

(
deg(v)

2

)
+

∑
v∈V,deg(v)<t

(
deg(v)

2

)
.

The expansion separates the summation for high degree nodes (deg(v) ≥ t) and low degree nodes.

By the handshake lemma, we know that the number of high degree nodes is at most 2m
t (there are

m edges each contributing to 2 degrees). Therefore, the first part of the sum is at most (2mt )3 (#

high degree nodes choose 3)

For the low degree nodes (i.e. nodes v such that deg(v) < t) we have that

∑
v∈V,deg(v)<t

(
deg(v)

2

)
≤

∑
v∈V,deg(v)<t

deg(v)2 ≤ t

 ∑
v∈V,deg(v)≤t

deg(v)

 ≤ 2mt.

This implies that the total work done by NodeIterator++ is upper bounded by (2mt )3 + 2mt. We

can choose t =
√
m to minimize this, giving 4m3/2+2m3/2 = O(m3/2) runtime for NodeIterator++.

For sparse matrices, O(m
3
2 ) < O(n2.373...), so we have achieved our goal of improving the matrix

multiplication algorithm by exploiting graph sparsity.

A reasonable question to ask is whether or not we lost some rigor or sharpness by changing the

algorithm in this way. We can construct an example such that there is a clique K√n and n −
√
n

nodes that are connected in a line (see figure 20). In this example, the number of triangles is

Θ(
(√

n
3

)
) = Θ(n

3
2 ) and m = Θ(

(√
n
2

)
) = O(n). Thus, our algorithm matches up with this bound.

One important concept that this example illustrates is that there is a noticeable difference in com-

plexity between listing and counting triangles. In order to list the triangles in a clique, there is

O(n3) work as there are just that many triangles. However, if we were just counting, we could do

it faster by just calculating A2 + A, which is just O(n2.37) amount of work.
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Figure 1: An example of a lollipop graph
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