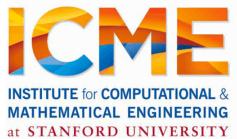
Partitioning for PageRank

Reza Zadeh

Spark



@Reza_Zadeh | http://reza-zadeh.com

Motivation

Recall from first lecture that network bandwidth is ~100× as expensive as memory bandwidth

One way Spark avoids using it is through locality-aware scheduling for RAM and disk

Another important tool is controlling the *partitioning* of RDD contents across nodes

Spark PageRank

Given directed graph, compute node importance. Two RDDs:

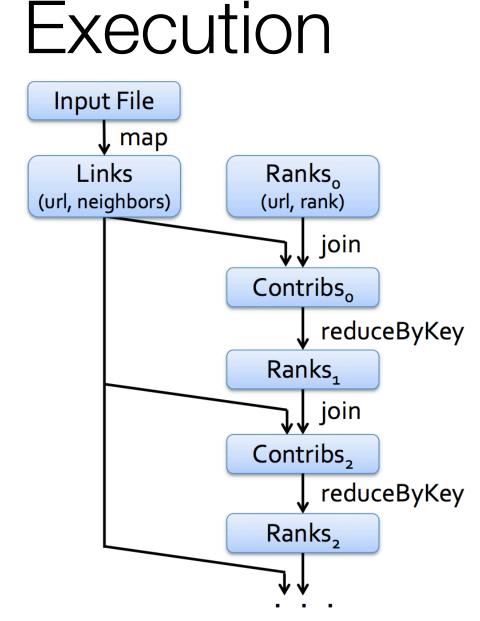
- » Neighbors (a sparse graph/matrix)
- » Current guess (a vector)

Best representation for vector and matrix?

Example

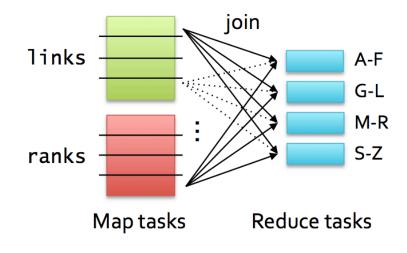
- 1. Start each page at a rank of 1
- 2. On each iteration, have page p contribute rank_p / neighbors_p to its neighbors
- 3. Set each page's rank to 0.15 + 0.85 × contribs

```
val links = // RDD of (url, neighbors) pairs
var ranks = // RDD of (url, rank) pairs
for (i <- 1 to ITERATIONS) {
  val contribs = links.join(ranks).flatMap {
    case (url, (links, rank)) =>
    links.map(dest => (dest, rank/links.size))
  }
  ranks = contribs.reduceByKey(_ + _).mapValues(.15 + .85*_)
}
```



links and ranks are repeatedly joined

Each join requires a full shuffle over the network » Hash both onto same nodes

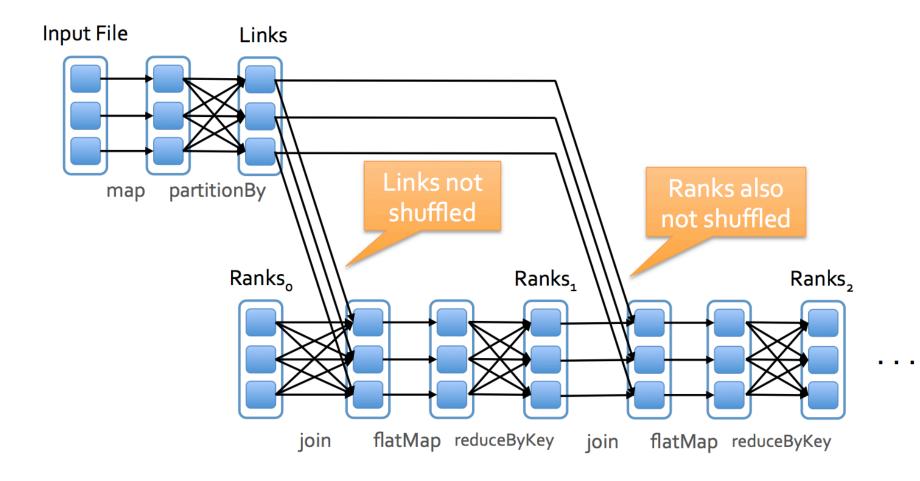


Solution

Pre-partition the links RDD so that links for URLs with the same hash code are on the same node

```
val ranks = // RDD of (url, rank) pairs
val links = sc.textFile(...).map(...)
                .partitionBy(new HashPartitioner(8))
for (i <- 1 to ITERATIONS) {
   ranks = links.join(ranks).flatMap {
      (url, (links, rank)) =>
        links.map(dest => (dest, rank/links.size))
   }.reduceByKey(_ + _)
   .mapValues(0.15 + 0.85 * _)
}
```

New Execution



How it works

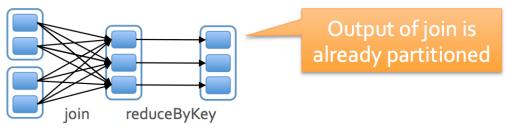
Each RDD has an optional Partitioner object

Any shuffle operation on an RDD with a Partitioner will respect that Partitioner

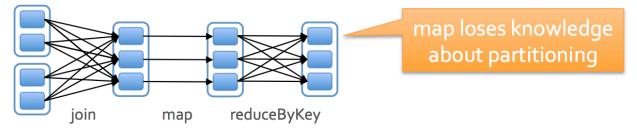
Any shuffle operation on two RDDs will take on the Partitioner of one of them, if one is set

Examples

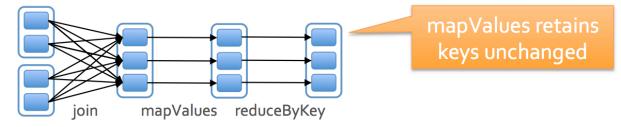
pages.join(visits).reduceByKey(...)



pages.join(visits).map(...).reduceByKey(...)



pages.join(visits).mapValues(...).reduceByKey(...)

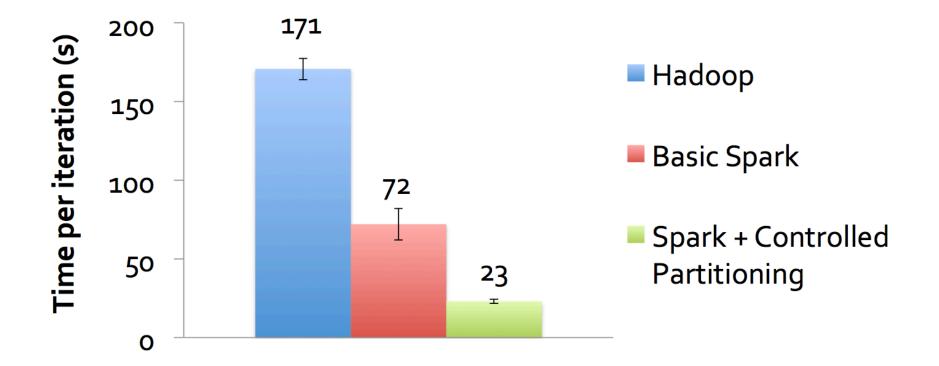


Main Conclusion

Controlled partitioning can avoid unnecessary all-to-all communication, saving computation

Repeated joins generalizes to repeated Matrix Multiplication, opening many algorithms from Numerical Linear Algebra

Performance



Why it helps so much: links RDD is much bigger in bytes than ranks!

RDD partitioner

Use the .partitioner method on RDD

```
scala> val a = sc.parallelize(List((1, 1), (2, 2)))
scala> val b = sc.parallelize(List((1, 1), (2, 2)))
scala> val joined = a.join(b)
```

scala> a.partitioner
res0: Option[Partitioner] = None

scala> joined.partitioner
res1: Option[Partitioner] = Some(HashPartitioner@286d41c0)

Custom Partitioning

Can define your own subclass of Partitioner to leverage domain-specific knowledge

Example: in PageRank, hash URLs by domain name, because may links are internal

class DomainPartitioner extends Partitioner {
 def numPartitions = 20

def getPartition(key: Any): Int =
 parseDomain(key.toString).hashCode % numPartitions

```
def equals(other: Any): Boolean =
    other.isInstanceOf[DomainPartitioner]
```

}

Needed for Spark to tell when two partitioners are equivalent