
CME 323: Distributed Algorithms and Optimization, Spring 2020

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 12, 5/7/2020. Scribed by Andreas Santucci, Edited by Robin Brown.

12 Communication Networks

We will model the communication structure of a distributed system as a network of processors

of connected by communication links. Specifically, in a network of n processors can be modeled

as a graph G = (V,E) where V = [n] represents the processors and there is an edge (i, j) ∈ E

if processor i can send a message to processor j. Each processor has its own local memory and

computational capabilities, and shares intermediate results with other processors through groups of

bits (called packets sent over the communication links. The communication graphGmay be directed

or undirected depending on whether the links are uni-directional or bi-directional. Moreover, each

link is characterized by its latency and bandwidth. Latency is defined as the time it takes to for

data to travel from one point to another. Bandwidth is defines as the rate at which data can be

transferred over a link during a fixed amount of time. Ultimately, these limits on communication

will fundamentally limit the efficiency of our distributed algorithms.

There are a number of causes of delay in communications:

1. Communication Processing Time is defined as the time needed to prepare a message for

transmission. Before transmitting, the information needs to be assembled into packets with

addressing and control information appended to each packet, the link on which to transmit

each packet needs to be selected, and the packets need moved to the appropriate buffers.

2. Queueing Time is defined as the time a packet waits in the queue before it is transmitted.

This can happen for a number of reasons: for example, the link is being used to send other

packets, or the allocation of a link to several contending packages is being decided, or the

transmission is delayed to ensure the appropriate resources i.e., buffer space is available at

the destination.

3. Transmission Time is defined as the time required to transmit all of the bits in the packet.

4. Propagation Time is defined as the time between the transmission of the last bit of a packet

and depends on the physical distance that data must travel and the medium it travels through.

For example, in a fiber optic cable, data travels at the speed of light.

We won’t deal with the specifics of networking, but instead will lump together our communication

costs in terms of latency and bandwidth.

1

http://stanford.edu/~rezab/dao

13 Cluster Computing, Broadcast Networks, and Communication

Patterns

Commodity cluster computing refers to using a large number of low-cost, low-performance commod-

ity computers, connected via ethernet, working in parallel instead of using fewer high-performance

and high-cost computers. The ethernet link between processors means that every processor can

communicate with every other processor in the cluster. In other words, the communication net-

work is a complete graph. This doesn’t mean that all processors should always be passing messages

to each other, though, as this could easily overload the bandwidth of the communication links.

Consequently, communication will need to be limited to ensure that the bandwidth constraints are

respected. One could theoretically design communication patterns that are tailored to the problem

at hand, however, the overhead of fault tolerance makes this unreasonable. Multiple programs must

be written for fault tolerance: one program for failures, one for scheduling and putting code where

it needs to be, and another for data locality. MapReduce and Spark will automatically handle this

overhead, however, this comes at the cost of full control of the communication patterns, which are

typically restricted to one of three patterns: (1) All to One, (2) One to All, and (3) All to All. We

will now analyze the cost of communication for each of these patterns.

13.0.1 All to one communication with a driver machine

Consider a scenario where computation is distributed among multiple machines and the results

are sent to a single driver machine, as shown in Fig.1. If all machines are directly connected to

the driver machine, the bottleneck of this communication is the network interface of the driver

machine. Let p be the number of machines (excluding the driver), L be the latency between each

pair of machines (specifically, L is the time it takes for the first message from a machine to arrive

at the driver machine), and B be the bandwidth of the network interface of the driver machine. If

all machines send a message of size M to the driver and driver ’s network interface is saturated by

every single message (meaning that the driver can only take in messages from other machines one

at a time), then each single message sent takes time proportional to

L+
M

B

Thus the overall communication time scales with:

p

(
L+

M

B

)
13.0.2 All to one communication as Bittorent Aggregate

Another algorithm for all to one communication is known as Bittorent Aggregate. Just as before,

we assume that each machine carries out a portion of the computation, and results need to be

aggregated at one machine. Instead of performing the aggregation at once, it is done incrementally

aggregating the results held by pairs of machines. The aggregation pattern can be seen as a tree

2

Figure 1: All to one communication with driver machine

Figure 2: All to one communication with Bittorent Aggregate

structure or as depicted in Fig.2. Assume we are aggregating results from p machines, the results

can be aggregated to a single machine in log2 p rounds. Let L be the latency and B be the bandwidth

between each pair of machines and in each aggregation round a message of size M is sent between

machine pairs. The total communication time is:

(log2 p)

(
L+

M

B

)

13.0.3 One to All communication

We can think of one to all communication as all to one communication with data flow in the opposite

direction. Suppose the driver machine needs to sends messages of size M to p other machines. The

driver machine’s network interface is still the bottleneck of communication. Following the an

3

analogous computation, communication cost is the same as one to all communication with driver

machine.

Similarly, we can use the concept of Bittorent Aggregate for one to all communication as well.

In this case, the message is relayed among machines in a tree structure. Then the message can be

spread among all machines within O(log p) rounds.

13.0.4 All to all communication

While we have previously stated that all to all communication can easily saturate bandwidth

constraints, there are some operations where all machines have to communicate with each other.

For example, sorting requires all to all communication. Suppose we are trying to sort a large

set of integers which exceeds the storage of a single machine. If the numbers are shuffled and dis-

tributed among multiple machines, without communication with the other machines, no individual

machine can know which number are stored on the other machines. Therefore, we require all to

all communication for each machine to determine how the numbers relate to the numbers stored

in other machines.

Other examples of problems that require all to all communication are JOIN and GROUPBY.

In fact, sorting is often a subroutine in implementing these two operations.

14 Optimization, scaling, and gradient descent in Spark

We will now consider two different optimization algorithms: gradient descent, and stochastic gra-

dient descent. In this class, we’ll implement gradient descent in Spark, and then see why SGD not

suitable for Spark. Then we’ll learn how to implementSGD regardless of the data-flow paradigm

of the language we’re computing in. For the remainder of this section, we will assume we have a

separable objective functions, of the form

min
x

n∑
i=1

Fi(x)

where w ∈ Rd and Fi is the loss-function applied to a training point i. We won’t make any

assumption about the specific form of each Fi.

The main question we are interested in is how our algorithm scales both in n, the number of

data points we have, and d the dimension of our model. In the first part of the lecture, we’ll assume

n is too large to fit on a single machine but that d numbers can fit on a single machine’s RAM.

Recall that gradient descent starts with a random initial vector, x0, say initialized to all zeros.

Then at each iteration xk+1 ← xk − α
∑n

i=1∇Fi(xk), where ∇Fi(·) is a vector itself.

14.0.1 Implementing Gradient Descent in Spark

The following block of code demonstrates an implementation of gradient descent in Spark:

4

val points = spark.textFile(...).map(parsePoint).cache()

var w = Vector.zeros(d)

For (i <- 1 to numIterations):

val gradient = points.map(p => ∇Fp(w)) .reduce(_+_)

w -= alpha * gradient

The first line reads in a text-file of training points and their associated labels. The operation,

parsePoint is a closure which takes as argument a single like of the text-file of training points and

their associated labels, and outputs a clean d-dimensional xi vector and a single label yi. After

parsing the files, we cache the RDD with the training points. The action cache tells Spark that

we’re going to use a particular RDD frequently, so each machine should try to hold that its part of

the RDD in memory as much as possible rather than flushing data to disk. Since we need to access

this RDD every iteration of gradient descent, we will want to keep it in memory. Recall that cache

is an action (as opposed to a transformation), so Spark actually kicks off computation and reads

in the text file, applying the parsePoint closure to each part of the distributed file.1 The next

line initializes the model parameters to a d-dimensional vector of all zeros. Finally, each iteration

of the for loop implements an iteration of gradient descent. The closure

points.map(p => ∇Fp(w))

maps each of the training points to their associated gradients of the loss function. Specifically,

∇Fp(w) is the gradient of Fp evaluated at point w. For example, if Fi(w) = (wTxi − yi)2, then

∇Fi may be calculated symbolically, and we may plug this formula into ∇Fp(·). Then we calculate

the full gradient as the sum of the individual gradients—we use reduce for this. Recall that Spark

uses lazy evaluations, the the computation is not kicked off until this reduce step. Under the

hood, Spark takes into account communication cost between machines, scheduling, and executing

operations locally in a PRAM model.

14.0.2 Broadcasting in Spark

Recall that by default, when a map happens, anything that is needed for the map to happen is

shipped out to the workers. So in the line

points.map(p => ∇Fp(w)).reduce(+)

since the function that maps each training point to it gradient depends on w, a copy of w will

be sent to every CPU of every machine. This happens, because by default, we assume w is

being modified. Consequently, we must store w separately to avoid any concurrent write issues.

However, when we calculate each gradient step, w is not being modified so there is no chance of a

1Suppose we have a 1 terabyte dataset, and we have a small amount of memory, say 10 gigabytes. Suppose we

wish to process the large dataset. We can read directly off the large terabyte slowly, or we can read directly off the

ram for faster access. The question becomes which part of the data set to store in ram since we can’t fit the entire

object in memory. We commonly employ Least Recently Used caching, which evicts items from ram according to

which piece of data was least recently used. This is a simple heuristic, but works in practice.

5

concurrent write. We are wasting storage by not storing w in shared memory. To get around this,

we can broadcast w so that it only gets sent to each machine a single time. To do this, we define

w as a broadcast variable. The following block of code illustrates gradient descent with the model

parameters as a broadcast variable.

val points = spark.textFile(...).map(parsePoint).cache()

var w = Vector.zeros(d)

var w_br = sc.broadcast(w)

For (i <- 1 to numIterations):

val gradient = points.map(p => ∇Fp(w_br.value)) .reduce(_+_)

w -= alpha * gradient

w_br = sc.broadcast(w)

End

When we initialize w, we first declare it as a broadcast variable. In each of the iterations

of gradient descent, we need to refer to the value of w. Finally, we re-broadcast w after it gets

updated. In addition to being more storage efficient on each machine, i.e. storing a single copy

of the data object instead of multiple, we also take advantage of bit-torrent broadcasting when we

use Spark’s broadcasting.

14.1 Analysis

Recall, gradient descent requires O(log 1
ε) iterations to achieve an ε-optimal solution if f is L-

smooth, and µ-strongly convex. While the computation of the gradients can be distributed across

the cluster of machines, the iterations of gradient descent are inherently serial. At each iteration,

Spark implements a synchronization barrier to ensure that w is fully updated before the workers

begin computing the next iteration. Just as in the parallel case, if there are stragglers, the other

workers are idle waiting for the next iteration. The depth of the computation of typically is the

bottleneck rather than the gradient updates.

Communication time The map is embarrassingly parallel, and requires no communication. The

broadcast requires one to all communication, and the reduce requires all-to-one communication.

So, per iteration, our total communication time scales with

2 log2(p)(L+
m

B
)

2

2Technically, when we call points.map(), we serialize code and send it to each machine. One reason we chose

Scala to implement Spark is that it’s easy to serialize code. We remark that there is a function called allReduce

which merges the concept of a reduce and broadcast. After a reduce, the result of the reduce ends up on the driver

machine. After an allReduce the result of the reduce gets sent to all machines via a broadcast; the broadcast

happens simultaneously with the regular reduce.

6

References

[1] R. Zadeh. Introduction to Distributed Optimization.

[2] R. Zadeh. Distributed Computing with Spark and MapReduce.

7

	12 Communication Networks
	13 Cluster Computing, Broadcast Networks, and Communication Patterns
	13.0.1 All to one communication with a driver machine
	13.0.2 All to one communication as Bittorent Aggregate
	13.0.3 One to All communication
	13.0.4 All to all communication

	14 Optimization, scaling, and gradient descent in Spark
	14.0.1 Implementing Gradient Descent in Spark
	14.0.2 Broadcasting in Spark

	14.1 Analysis

