
CME 323: Distributed Algorithms and Optimization, Spring 2020

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 5, 4/14/2020. Scribed by Andreas Santucci, Edited by Robin Brown.

5 Memory Management and (Seemingly) Trivial Operations

We have to be extremely careful when analyzing work and depth for parallel algorithms. Even

the most trivial operations must be dealt with care. For example, even an operation as trivial as

concatenate, i.e. in the case where we wish to concatenate two arrays together. Suppose we have

two arrays A,B each of length n. If A and B are located in two different places in RAM then we

might have a problem. The usual way to deal with these things is to allocate the output array which

costs constant time regardless of input size. Then, if we wish to concatenate two arrays into our

output, we simply give one thread half the array and the other thread the other half of the array

memory. When both threads are done, it’s as though we have already performed a concatenate

operation for free.

If allowed each thread to return its own array in the usual manner, we can still concatenate the

two with D(n) = O(1). To do this, we simply assign each processor one element to be copied or

moved in RAM and perform the n operations in parallel. Hence depth is constant. However, we

still need to perform O(n) work in this case.

We assume that we can allocate memory in constant time, as long as we don’t ask for the

memory to have special values in it. That is, we can request a large chunk of memory (filled with

garbage bit sequences) in constant time. However, requesting an array of zeros already requires

Θ(n) work since we must ensure the integrity of each entry1. In the context of sequential algorithms,

this is not a concern since reading in an input of n bits, or outputting n bits already requires Θ(n)

work, so zeroing out an array of size n does not dominate the operation count. However, in some

parallel algorithms, no processor reads in the entire input, so naively zeroing out a large array can

easily dominate the operation time of the algorithm.

6 QuickSort

With this in mind, we will now finish the analysis of QuickSort, taking a closer look at memory

management dueing the algorithm. The algorithm is as follows.

6.1 Analysis on Memory Management

Recall that in Lecture 4, we designed an algorithm to construct L and R in O(n) work and O(log n)

depth. We will take this opportunity to highlight some of the intricacies of memory management

during the construction of L and R.

1In practice, zeroing out an array is optimized by hardware and is not a concern.

1

http://stanford.edu/~rezab/dao

Algorithm 1: QuickSort

Input: An array A

Output: Sorted A

1 p← element of A chosen uniformly at random

2 L← [a|a ∈ A s.t. a < p] // Implicitly: BL ← 1{ai < p}ni=1,

prefixSum(Bl),

3 R← [a|a ∈ A s.t. a > p] // which requires Θ(n) work and O(log n) depth.

4 return [QuickSort(L), p, QuickSort(R)]

Selecting a pivot uniformly at random We denote the size our input array A by n. To be

precise, we can perform step 1 in Θ(log n) work and O(1) depth. That is, to generate a number

uniformly from the set {1, 2, . . . , n} we can assign log n processors to independently flip a bit “on”

with probability 1/2. The resulting bit-sequence can be interpreted as a log2 representation of a

number from {1, . . . , n}.

Allocating storage for L and R Start by making a call to the OS to allocate an array of n

elements; this requires O(1) work and depth, since we do not require the elements to be initialized.

We compare each element in the array with the pivot, p, and write a 1 to the corresponding element

if the element belongs in L (i.e. it’s smaller) and a 0 otherwise. This requires Θ(n) work but can

be done in parallel, i.e. O(1) depth. We are left with an array of 1’s and 0’s indicating whether an

element belongs in L or not, call it 1L,

1L = 1{a ∈ A s.t. a < p}.

We then apply PrefixSum on the indicator array 1L, which requires O(n) work and O(log n)

depth. Then, we may examine the value of the last element in the output array from prefixSum

to learn the size of L. Looking up the last element in array 1L requires O(1) work and depth. We

can further allocate a new array for L in constant time and depth. Since we know |L| and we know

n, we also know |R| = n − |L|; computing |R| and allocating corresponding storage requires O(1)

work and depth.

Thus, allocating space for L and R requires O(n) work and O(log n) depth.

Filling L and R Now, we use n processors, assigning each to exactly one element in our input

array A, and in parallel we perform the following steps. Each processor 1, 2, . . . , n is assigned to its

corresponding entry in A. Suppose we fix attention to the kth processor, which is responsible for

assigning the kth entry in A to its appropriate location in either L or R. We first examine 1L[k]

to determine whether the element belongs in L or R. In addition, examine the corresponding entry

in prefixSum output, denote this value by i = prefixSum(1L)[k]. If the kth entry of A belongs

in L, then it may be written to the position i in L immediately, by definition of how what our

prefixSum output on 1L means. If the kth entry instead belongs in R, then realize that index i

tells us that exactly i entries “before” element k belong in L. Hence exactly k − i elements belong

2

in array R before element A[k]. Hence we know exactly where to write the kth element to R if it

belongs there.

Clearly, the process of filling L and R requires O(n) work and O(1) depth.

Work and Depth per Iteration Thus we may say that steps 1,2,3 of our algorithm require

O(n) work and O(log n) depth.2 The last step of the algorithm requires recursive calls to Quicksort

and a concatenation of several elements. Realize that if we are clever about how we allocate the

memory for our arrays to begin with, this “concatenation” (or lack thereof) can be performed

without extra work or depth.3

6.2 Total Expected Work

Now we analyze the total expected work of QuickSort.4 We assume all our input elements are

unique.5 On a very high level, to compute the work, note that the work done summed across each

level of our computational DAG is n. There are log4/3 n levels in our DAG, hence expected work

given by

E[T1] = E[# levels] · E[work per level] = O(n log n)

Details We define the random indicator variable Xij to be one if the algorithm does compare the

ith smallest and the jth smallest elements of input array A during the course of its sorting routine,

and zero otherwise. Let X denote the total number of comparisons made by our algorithm. Then,

we have that

X =
n−1∑
i=1

n∑
j=i+1

Xij .

Number of Comparisons We take a moment to realize why we sum over
(
n
2

)
elements instead

of n2: the only time in our QuickSort algorithm whereby we make a comparison of two elements

is when we construct L and R. In doing so, we compare each element in the array to a fixed pivot

of p, after which all elements in L less than p and all elements in R greater than p. Realize that

pivot p is never compared to elements in L and R for the remainder of the algorithm. Hence each

of the
(
n
2

)
pairings are considered at most once by our QuickSort algorithm.

2It may be tempting to think that we can get away with not calculating a prefixSum on 1L in order to determine

the sizes of L and R, and instead pass this indicator array 1L to our recursive call. We might think that we can then

avoid incurring logn depth. However, realize that then when we pass 1L to our recursive call, it would still be of size

n, hence we would not be decreasing the size of our problem with each recursive call. This would result in quite a

poor algorithm.
3For details, see lecture 4 notes, specifically the section on “Parallel Algorithms and (Seemingly) Trivial Opera-

tions”.
4We follow the analysis from CMU very closely.[1]
5If there are duplicate elements in our input A, then this only cuts down the amount of work required. As the

algorithm is written, we look for strict inequality when constructing L and R. If we ever select one of the duplicated

elements as a pivot, its duplicates values are not included in recursive calls hence the size of our sub-problems

decreases even more than if all elements were unique.

3

https://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0123.pdf

Expected Number of Comparisons Realize that expectation operator E is monotone, hence

E[X] ≤ E

n−1∑
i=1

n∑
j=i+1

Xij

 =
n−1∑
i=1

n∑
j=i+1

E[Xij],

where the equality follows from linearity of expectation. Since Xij an indicator random variable,

E[Xij] = 0 · Pr(Xij = 0) + 1 · Pr(Xij = 1) = Pr(Xij).

Consider any particular Xij for i < j (i.e. one of interest). Denote the ith smallest element of

input array A by rank−1
A (i) for i = 1, 2, . . . , n. For any one call to QuickSort, there are exactly

three cases to consider, depending on how the value of the pivot compares with A[i] and A[j].

• Case 1: p ∈ {rank−1
A (i), rank−1

A (j)} In selecting a number from {1, 2, . . . , n} uniformly

at random, we happen to select an element as pivot from A which is either the ith smallest

element in A or the jth smallest element in A. In this case, Xij = 1 by definition.

• Case 2: rank−1
A (i) < p < rank−1

A (j): The value of the pivot element selected lies between

the ith smallest element and the jth smallest element. Since i < j, element i placed in L

and j placed in R and Xij = 0, since the elements will never be compared.

• Case 3: p < rank−1
A (i) or p > rank−1

A (j): The value of the pivot is either less than the

ith smallest element in A or greater than the jth smallest, in which case either both elements

placed into R or both placed into L respectively. Hence Xij may still be “flipped on” in

another recursive call to Quicksort.

It’s possible that on any given round of our algorithm, we end up falling into case 3. Ignore

this for now. In doing so, we implicitly condition on falling into case 1 or 2, i.e. we condition on

our rank p being chosen so that it lies in the set of values {rank−1
A (i), rank−1

A (i+1), . . . , rank−1
A (j)}.

Then, the probability that Xij = 1 (ignoring case 3) is exactly

2/(j − i + 1),

Thus,

E[X] =
n−1∑
i=1

n∑
j=i+1

E[Xij] =
n−1∑
i=1

n∑
j=i+1

2

j − i + 1
=

n−1∑
i=1

2
n∑

j=i+1

1

j − i + 1

=
n−1∑
i=1

2

(
1

2
+

1

3
+ . . . +

1

n− i + 1

)
.

Now, note that Hn =
∑n

i=1
1
i is the Harmonic Number. We note that

∑n
i=1

1
i <

∫ n
1

1
xdx, from

Calculus,6 and further that
∫ n
1

1
xdx = lnn. Hence we see that

E[X] =
n−1∑
i=1

2

n−i+1∑
j=2

1

j
< 2nHn = O(n log n).

6This can easily be seen by comparing a Lower Darboux Sum with a Riemann Integral.

4

https://en.wikipedia.org/wiki/Harmonic_number

So, in expectation, the number of comparisons (i.e. the work performed by our algorithm) is

O(n log n).

6.3 Total Expected Depth

Recall our analysis in Lecture 4 for QuickSelect. In a similar fashion, we may consider the number

of recursive calls made to our algorithm when our input array is of size(
3

4

)k+1

n < |A| <
(

3

4

)k

n,

and denote this quantity by Xk. We saw that if we select a pivot in the right way, we can reduce

input size by 3/4.

If we select any of these elements in red as a pivot,

where we visualize the elements being in sorted or-

der, then both L and R will have size ≤ 3
4n.

1
4

3
4

Figure 1: Ideal Pivot Selection

We saw that E[Xk] = 2, since it’s a geometric random variable (i.e., we continually make calls

to QuickSort until we successfully reduce our input size by at least 3/4. In expectation, this takes

two trials. Hence in expectation we require 2c log4/3 n recursive calls to be made before we reach a

base case.

QuickSort(A)

QuickSort(L) QuickSort(R)

...
...

...
...

O(log n) levels

Figure 2: Computational DAG for QuickSort

Here, we see that in our computational DAG, we have O(log4/3 n) levels. At each level, our

algorithm requires O(log n) depth since the bottleneck is in constructing L and R and specifically

5

in the call to Prefix Sum. Hence in expectation our total depth given by the expected number of

levels times the expected depth per level: E[D(n)] = O(log2 n).

6.4 A Shortcut for Bounding Total Expected Work

Examine figure 6.3, the computational DAG for our QuickSort algorithm. We are initially handed

an input array of size n elements. At each level of our DAG, the n elements are split into chunks

across nodes in that level. Specifically, we’re not sure exactly how many elements from A are

allocated to L, nor do we know exactly how many elements from A are allocated to R. But we

definitely know that there are always n elements we deal with on each level. The most work-

intensive operation we perform in each call to QuickSort is in constructing L and R, which requires

Θ(n) work. Hence, for a given level in our computational DAG, we perform exactly Θ(n) work

total after summing across work in all nodes.

So, in this very specialized analysis, we have that expected work is

E[W] = (# nodes per level)× (# levels) = O(n log n).

Since there are O(log n) levels in our tree in expectation, we perform O(n log n) work in expec-

tation.

7 Matrix multiplication: Strassen’s algorithm

We’ve all learned the naive way to perform matrix multiplies in O(n3) time.7 In today’s lecture, we

review Strassen’s sequential algorithm for matrix multiplication which requires O(nlog2 7) = O(n2.81)

operations; the algorithm is amenable to parallelization.[4]

A variant of Strassen’s sequential algorithm was developed by Coppersmith and Winograd, they

achieved a run time of O(n2.375).[3] The current best algorithm for matrix multiplication O(n2.373)

was developed by Stanford’s own Virginia Williams[5].

7.1 Idea - Block Matrix Multiplication

The idea behind Strassen’s algorithm is in the formulation of matrix multiplication as a recursive

problem. We first cover a variant of the naive algorithm, formulated in terms of block matrices,

and then parallelize it. Assume A,B ∈ Rn×n and C = AB, where n is a power of two.8

We write A and B as block matrices,

A =

(
A11 A12

A21 A22

)
, B =

(
B11 B12

B21 B22

)
, C =

(
C11 C12

C21 C22

)
,

7Refresher, to compute C = AB, we need to compute cij , of which there are n2 entries. Each one may be computed

via cij = 〈aT
i , bj〉 in 2n− 1 = Θ(n) operations. Hence total work is O(n3).

8If n is not a power of two, then from a theoretical perspective we may simply pad the matrix with additional

zeros. From a practical perspective, we would simply use un-equal size blocks.

6

where block matrices Aij are of size n/2×n/2 (same with respect to block entries of B and C).

Trivially, we may apply the definition of block-matrix multiplication to write down a formula for

the block-entries of C, i.e.

C11 = A11B11 + A12B21

C12 = A11B12 + A12B22

C21 = A21B11 + A22B21

C22 = A21B12 + A22B22

7.2 Parallelizing the Algorithm

Realize that Aij and Bk` are smaller matrices, hence we have broken down our initial problem of

multiplying two n × n matrices into a problem requiring 8 matrix multiplies between matrices of

size n/2 × n/2, as well as a total of 4 matrix additions. There is nothing fundamentally different

between the matrix multiplies that we need to compute at this level relative to our original problem.

Further, realize that the four block entries of C may be computed independently from one

another, hence we may come up with the following recurrence for work:

W (n) = 8W (n/2) + O(n2)

By the Master Theorem,9 W (n) = O(nlog2 8) = O(n3). So we have not made any progress

(other than making our algorithm parallel). We already saw in lecture two that we can naively

parallelize matrix-multiplies very simply to yield O(n3) work and O(log n) depth.

7.3 Strassen’s Algorithm

We now turn toward Strassen’s algorithm, such that we will be able to reduce the number of sub-

calls to matrix-multiplies to 7, using just a bit of algebra. In this way, we bring the work down to

O(nlog2 7).

How do we do this? We use the following factoring scheme. We write down Cij ’s in terms of

block matrices Mk’s. Each Mk may be calculated simply from products and sums of sub-blocks of

A and B. That is, we let

9Case 1: f(n) = O(n2), so c = 2 < 3 = log2(8).

7

M1 = (A11 + A22) (B11 + B22)

M2 = (A21 + A22)B11

M3 = A11(B12 −B22)

M4 = A22(B21 −B11)

M5 = (A11 + A12)B22

M6 = (A21 −A11)(B11 + B12)

M7 = (A12 −A22)(B21 + B22)

Crucially, each of the above factors can be evaluated using exactly one matrix multiplication.

And yet, since each of the Mk’s expands by the distributive property of matrix multiplication,

they capture additional information. Also important, is that these matrices Mk may be computed

independently of one another, i.e. this is where the parallelization of our algorithm occurs.

It can be verified that

C11 = M1 + M4 −M5 + M7

C12 = M3 + M5

C21 = M2 + M4

C22 = M1 −M2 + M3 + M6

Realize that our algorithm requires quite a few summations, however, this number is a constant

independent of the size of our matrix multiples. Hence, the work is given by a recurrence of the

form

W (n) = 7W (n/2) + O(n2) =⇒ W (n) = O(nlog2 7).

What about the depth of this algorithm? Since all of our recursive matrix-multiplies may be

computed in parallel, and since we can add matrices together in unit depth,10 we see that depth is

given by

D(n) = D(n/2) + O(1) =⇒ D(n) = O(log n)

By Brent’s theorem, Tp ≤ n2.81

p + O(log n). In the years since Strassen published his paper,

people have been playing this game to bring down the work required marginally, but nobody has

come up with a fundamentally different approach.

10We note that to perform matrix addition of two n × n matrices X + Y = W , we may calculate each of the n2

entries Wij = Xij +Yij in parallel using n2 processors. Each entry requires only one fundamental unit of computation,

hence the work for matrix addition is O(n2) and the depth is O(1).

8

7.4 Drawbacks of Divide and Conquer

We now discuss some bottleneck’s of Strassen’s algorithm (and Divide and Conquer algorithms in

general).

• We haven’t considered communication bottlenecks; in real life communication is expensive.

• Disk/RAM differences are a bottleneck for recursive algorithms, and

• PRAM assumes perfect scheduling.

Caveat - Big O and Big Constants One last caveat specific to Strassen’s Algorithm is that

in practice, the O(n2) term requires 20 · n2 operations, which is quite a large constant to hide. If

our data is large enough that it must be distributed across machines in order to store it all, then

really we can often only afford to pass through the entire data set one time. If each matrix-multiply

requires twenty passes through the data, we’re in big trouble. Big O notation is great to get you

started, and tells us to throw away egregiously inefficient algorithms. But once we get down to

comparing two reasonable algorithms, we often have to look at the algorithms more closely.

When is Strassen’s worth it? If we’re actually in the PRAM model, i.e. we have a shared

memory cluster, then Strassen’s algorithm tends to be advantageous only if n ≥ 1, 000, assuming no

communication costs. Higher communication costs drive up the n at which Strassen’s becomes useful

very quickly. Even at n = 1, 000, naive matrix-multiply requires 1e9 operations; we can’t really do

much more than this with a single processor. Strassen’s is mainly interesting as a theoretical idea.

For more on Strassen in distributed models, see [2].

Disk Vs. RAM Trade-off What is the reason that we can only pass through our data once?

There is a big trade-off between having data in ram and having it on disk. If we have tons of data,

our data is stored on disk. We also have an additional constraint that with respect to streaming

data, as the data are coming in they are being stored in memory, i.e. we have fast random access,

but once we store the data to disk retrieving it again is expensive.

References

[1] Probabilistic analysis and randomized quicksort, Carnegie Mellon, 15451-s07, (2007).

[2] G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz, Communication-

optimal parallel algorithm for strassen’s matrix multiplication, CoRR, abs/1202.3173 (2012).

[3] D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progressions, J.

Symbolic Computation, 9 (1990), pp. 251–280.

[4] V. Strassen, Gaussian elimination is not optimal, Numerische Mathematik, 13, pp. 354–356.

[5] V. V. Williams, Multiplying matrices in o(n2.373) time, Stanford University, (2014).

9

	5 Memory Management and (Seemingly) Trivial Operations
	6 QuickSort
	6.1 Analysis on Memory Management
	6.2 Total Expected Work
	6.3 Total Expected Depth
	6.4 A Shortcut for Bounding Total Expected Work

	7 Matrix multiplication: Strassen's algorithm
	7.1 Idea - Block Matrix Multiplication
	7.2 Parallelizing the Algorithm
	7.3 Strassen's Algorithm
	7.4 Drawbacks of Divide and Conquer

