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Lecture contents

1. Graph contractions

2. Star contraction

3. Parallel connected components (random mates)

4. Intro to optimization

1 Parallel MST via Boruvka’s Algorithm

Since we need to evaluate the edges in order of weight, Kruskal’s algorithm is inherently sequential.

We need a new approach if we want a parallel MST algorithm. Kruskal’s algorithm is instructive in

that it uses the Cut Property which we proved last lecture. Our parallel algorithm, which is really

Boruvka’s algorithm, will also use this property. [?]

1.1 Observation - Smallest Weight Incident Edge on each Node belongs in MST

A single node is a subset of the nodes, i.e. each node can be considered individually to define a cut.

And so if you look at a single node and its incident edges, the smallest one must be in the MST

by applying the cut property. Realize that if we determined the smallest weight edge incident to

each node in our graph, we must find at least n/2 unique edges belonging to the MST. Why n/2?

When we search for a lowest weight incident edge on each node, realize that it’s possible the node

to which such an edge connects also selects the same edge for inclusion in the MST. At worst, this

could happen for each node. Hence we must find at least n/2 edges in our MST.

1.2 Edge Contraction

Before we can recursively apply our algorithm, we must first take each of the (at least) n/2 edges

we found belonging to the MST and “merge” the two incident nodes into one.

Deleting Duplicate Edges Suppose we add edge (u, v) to our tree. The neighborhood of u and

the neighborhood of v may overlap, hence we have two ways to get from super-node u-v to such

a neighbor t. When we contract edge (u, v), we would yield a multi-graph, in which two vertices

may be connected by more than one edge. We wish to avoid this, and since our algorithm uses the

Red-Rule (and is interested in the lowest weight edge in a cut), we can ignore the edge with larger

1

http://stanford.edu/~rezab/dao 
https://en.wikipedia.org/wiki/Multigraph


weight. That is, if Γ(u)∩Γ(v) 6= ∅ in our original graph G, then for each node t in the intersection

of these two neighborhoods, we compare w(u, t) with w(v, t) and delete the edge with larger weight.

Recursive formulation But notice that when we contract the edges, the resulting “super” node

(consisting of multiple nodes) itself defines a cut. Hence we can again apply the Red-Rule and find

the smallest weight edge incident to each of the nodes in the contracted graph, and again continue

to find more edges belonging to the MST. Hence we repeat the algorithm until we realize an MST.

Since each time we find at least n/2 edges, we only must repeat our algorithm at most log2 n times

before finding an MST.

1.3 Boruvka’s Algorithm

We assume that the graph is stored in an Adjacency-List, i.e. for each node we store its neighbors

in a linked list. Since each node can have at most n− 1 neighbors, each adjacency list can have at

most n− 1 entries. There are n adjacency lists (one for each node).

Algorithm 1: Boruvka’s Algorithm

Input : Graph G, represented by adjacency list

1 for each node, in parallel do

2 Compute smallest weight incident edge // O(m) work, O(log n) depth

3 end

4 Contract edges

5 Merge Adjacency Lists // O(n) work and O(1) depth

6 Recurse

1.4 Analysis

1.4.1 Finding Smallest Weight Incident Edges

Examine the initial for loop which is executed in parallel. We know that we’re looking for smallest

weight edges, hence we know that we need to examine each edge at least once, i.e. we require at

least O(m) work. Do we require more? No. By the handshake lemma,
∑

i deg(vi) = 2|E|. Since

for each node v ∈ V , we need to find the minimal weight incident edge, we must scan through 2|E|
neighbors in total. We may use our parallel quickSelect algorithm on each adjacency list which

requires O(deg(vi)) work and O(log deg(vi)) depth. Summing across To bound total work, we must

sum across all nodes, hence total work is O(m) by handshake lemma. For depth, realize that we

are concerned with maxi deg(vi), which is O(n). Hence depth is O(log n).

1.4.2 Contracting Edges

Although we’ve shown that we remove n/2 isolated vertices in each round, we have not shown

anything about how many edges we remove in each iteration. The question remains, how fast are
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our sub-problems decreasing in size? Notice that the number of edges removed in a contraction

is at least equal to the number of vertices (since each vertex selects a lowest eight incident edge).

Consider a best case possible sequence of events.We cite Blelloch and Maggs, specifically section

16.2.[?]

round vertices edges

1 n m

2 n/2 m− n/2

3 n/4) m− n/2− n/4 = m− 3n/4
...

...
...

k n/2k−1 m− (2k−1 − 1)n/(2k−1)

Notice that for all k ∈ N,

n
2k−1 − 1

2k−1
= n

(
1− 1

2k−1

)
︸ ︷︷ ︸

<1

hence the number of edges never quite drops below m − n. So as long as there are m > 2n

edges to start with, work is O(m log n).

Crucial Observation: Minimum Weight Edges form a Forest Crucially, in the first stage

of our algorithm, each node its own connected component. It’s also a tree, since a component of

size 1 with 0 edges is connected and acyclic hence it’s a tree. Realize that when we expand via

minimum weight edges, since these edges are guaranteed to be in the MST, they cannot form a

cycle, hence the result we get is a forest. Hence, our job is now to actually contract an entire tree

(such that we may apply this to each tree in the forest).

To contract a tree, have each node (in parallel) flip a coin. If a vertex flips heads, it becomes

the center of a star. If it flips tails, then the vertex attempts to become a satellite of (some) star by

finding a neighbor which is a center.1 If no such neighbor exists, i.e. if all other neighbors flipped

tails or the vertex is isolated, then the vertex becomes a center.

When we perform a contraction, we need to select one node as the center, and the rest are

satellites. Edges between satellites and centers must be deleted. Edges which cross partitions must

be kept.2

Claim 1.1 For a graph G with n non-isolated vertices, let Xn be the random variable indicating

the number of satellites in a call to our tree contraction process described above. Then,

E[Xn] ≥ n/4.
1If multiple a vertex has multiple neighbors which are centers, it may select one arbitrarily. For example, we select

the one with lowest node index.
2We now turn to Lemma 16.17 of Blelloch and Maggs.
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Proof: Consider any non-isolated vertex v ∈ V (G). By definition, a non-isolated vertex has at least

one neighbor, hence the probability that v becomes a satellite is at least Pr(node v flips Tails) ×
Pr(neighbor flips Heads) ≥ 1

4 . Hence by linearity of expectation,

E[# Isolated Vertices] =
∑

non-isolated vertices

E[vertex i becomes isolated] ≥ n/4.

Contracting a tree yields another Tree Since when doing start contraction on a tree, it

remains a tree on each step, the number of edges does down with the number of vertices. Further,

since a tree on n nodes has n−1 edges, the number of edges in a forest is never more than n. Hence

the number of edges in our graph decrease geometrically in expectation. Hence total expected work

given by

E[W (n,m)] =
∞∑
i=0

(
3

4

)i

kn = O(n).

The Depth of the contraction is given by E[D(n,m)] = O(log n) since when we accumulate

neighborhood lists, adding an edge to it requires O(log n) depth since the height of the neighbor

hood tree is at most O(log n).

1.4.3 Merge Adjacency Lists

In terms of our data structures, we have n adjacency lists, and if we are contracting edge (u, v), then

we must merge their corresponding adjacency lists together. Suppose that our list data structure

is singly linked with a head to both the head and tail. Since u < v via lexicographical comparison,

we choose to make u the “parent” node, i.e. v’s neighbors are absorbed into the neighborhood of

u. Hence, we may simply take the tail of u’s adjacency list and point it to the head of v’s. This

takes O(1) work.

Since we must contract at least n/2 edges each iteration, this requires O(n) work total. Notice

that we may contract each edge independently of the rest, hence we have O(1) depth.

1.4.4 Total Work and Depth

Total Work Notice that our algorithm employs unary tail recursion. We have a chain of O(log n)

recursive calls to our algorithm. At each recursive call, we require O(m) work to be performed,

since our bottleneck is in finding the smallest weight edge incident each component. Hence total

work simply W (n,m) = O(m log n).

Total Depth Note that at each of the O(log n) recursive calls, we require O(log n) depth in order

to perform a min-scan. Hence total depth given by D(n,m) = O(log2 n).
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2 Intro to Optimization

2.1 Overview

The purpose of optimization is to minimize some objective function F . Formally stated, we wish

to solve the following problem:

min
w

F (w), where F (w) =

n∑
i=1

Fi(w, xi, yi)

xi ∈ Rd, yi ∈ R for i = 1, . . . , n

w ∈ Rd

Here, the xi’s can be interpreted as the input data, the yi’s as the output data, and w as the

computed optimal weights. Fi is some objective function that is suitable for the problem at hand.

A few commonly used examples include:

• Least squares

• Support vector machine (SVM)

• Exponential function (logistic regression)

• Forward/backward algorithm (neural network)

In optimization, there are 2 main dimensions that can be scaled:

1. n – number of training points (“data parallelism”)

2. d – model size (“model parallelism”)

Optimization has aspects that are suited for distributed computing like regularization and hyper-

parameter tuning, but these things are quite straightforward and not particular interesting from

an algorithmic or distributed design perspective.
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