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1 Overview, Models of Computation, Brent’s Theorem

1.1 Overview

In the first half of the class, we’re going to look at the history of parallel computing and pick

up the notable breakthroughs from the last several decades. The last half of the class will be

focused on the novel algorithmic developments in distributed computing. To really talk about

distributed computing (which involves network communication overhead), we need to understand

parallel computing on a single machine with multiple processors and shared memory.

Why focus on parallel algorithms? The regular CPU clock-speed used to double every several

years which meant our algorithms would run faster. This phenomena tapered off after CPU’s

reached around 3 Gigahertz; we reached fundamental limits on how much heat can be transferred

away from the CPU. This is in contrast with RAM and hard-disk space, which has not stopped

getting bigger, yet; each year we can buy larger amounts of memory for the same price. CPU’s

are different, and so hardware manufacturers decided to have many cores instead of faster cores.

Because computation has shifted from sequential to parallel, our algorithms have to change.1

Efficiency of Parallel Algorithms Even notions of efficiency have to change. We can no longer

look at the number of operations that an algorithm takes to estimate the wall-clock compute time.

Algorithms which work well in parallel are very different from those which work well sequentially.

Different types of hardware A machine made with an Intel instruction set will have dozens of

cores in it, each capable of complex operations; but notice it’s only dozens, e.g. 16 or 32. NVidia,

on the other hand, pursues GPU computing, in which there are thousands of cores, each of which

can only do basic floating point operations; at each time-step all of the cores must perform the

same operation, with the caveat that they are feeding off of different data. These are known as

SIMD chips, “single instruction multiple data”. There are many other variants as well.

Course Goals The first lectures will outline measures of complexity for parallel algorithms,

focusing on a work-depth (single-machine) model. At the end of the course, we’ll see how we can

string together thousands of machines, each with several CPU’s and a shared memory module, and

1One might think we can take existing sequential algorithms and magically run a compiler to make it a parallel

program. It turns out that writing such a compiler is actually an NP hard problem, something we will prove later

on in this course.
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distribute our computations across the network. We’ll learn a new module which lets us analyze

these communication costs.

1.2 Sequential RAM Model

Random Access Memory (RAM) model is the typical sequential model. We are given a processor

p1, and it’s attached to a memory module m1. The processor p1 can read and write to (any position

in )memory in constant time. This is the model we are used when using loops in C or Java.

Figure 1: Sequential RAM Model

We will not focus on this model in class.

1.3 Parallel RAM Model

In a Parallel RAM (PRAM) Model, we always have multiple processors. But how these processors

interact with the memory module(s) may have different variants, explained in the caveat below.

Caveat - Variants of PRAM Models We might have multiple processors which can all access

a single large chunk of memory. We can do anything we could in the Sequential RAM Model, with

one caveat: when two processors want to access the same location in memory at the same time

(whether its read or write), we need to come up with a resolution. What type of resolution we

come up with dictates what kind of parallel model we use. The different ways a PRAM model can

be set up is the subset of the following combinations:

{Exclusive,Concurrent} × {Read,Write}.

Of these combinations, the most popular model is the concurrent read and exclusive write model.

However, sometimes concurrent write is used. 2

Resolving Concurrent Writes Here are the ways to deal with concurrent write:

• Undefined/Garbage e.g. Machine could die or results could be garbage.

• Arbitrary no specific rule on which processor gets write-priority, e.g. if p1, p2, . . . , pj all try

to write to same location, arbitrarily give preference to exactly one of them

• Priority specific rule on which processors gets to write, e.g. preference pi over pj ⇐⇒ i ≤ j.

2We note that some of these combinations don’t make sense. For example, exclusive read and concurrent writes.
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• Combination combining values being written, e.g. max or logical or of bit-values written.

We note that there is still a clock which ticks for all processors at the same time. At each clock-

tick, each processor reads or writes to memory. Hence it is in fact possible for several processors

to concurrently attempt to access a piece of memory (at the exact same time).

Pros and Cons of Model Variants In the world of sequential algorithms, the model is fixed.

In the parallel world, we have the flexibility to decide which variant of the PRAM model to use.

The benefits of this is that the algorithm designer may choose a model which tailors to their

application. The downside is that comparing algorithms across models is difficult. We’ll see how

a parallel algorithm’s efficiency can be orders of magnitude different using different models for

parallel computation. As an algorithm designer, you should advertise the model which you think

your algorithm which will be used on the most.

1.4 Generic PRAM Models

Below, we picture two examples of PRAM models. On the left, we have a multi-core model, where

multiple processors can access a single shared memory module. This is the model of computation

used in our phones today. On the right, we have a machine with multiple processors connected

to multiple memory modules via a bus. This generalizes to a model in which each processor can

access memory from any of the memory modules, or a model in which each processor has its own

memory module, which cannot be directly accessed by other processors but instead may be accessed

indirectly by communicating with the corresponding processor.

Figure 2: Examples of PRAM

In practice, either arbitrary or garbage is used; these are both reasonable. We will not tie

ourselves to what any one manufacturer chooses for their assembly-level instruction set.

Further Complications - Cache In reality, there are additionally (several layers of) cache in

between each processor and each memory module, which all have different read-write speeds. This
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further complicates things. We won’t press this last point much further.

1.5 Defenestration of bounds on runtime

We now move toward developing theory on top of these models. In RAM Models, we typically

count the number of operations and assert that the time taken for the algorithm is proportional to

the number of operations required. I.e.,

time taken ∝ number of operations

This no longer holds in a parallel model. In a PRAM, we have to wait for the slowest processor

to finish all of its computation before we can declare the entire computation to be done. This is

known as the depth of an algorithm. Let

T1 = amount of (wall-clock) time algorithm takes on one processor, and

Tp = amount of (wall-clock) time algorithm takes on p processors.

1.6 Practical implications of work and depth

Defining work In general, work is the most important measure of the cost of an algorithm.

We argue as follows: the cost of a computer is proportional to the number of processors on that

computer. The cost for purchasing time on a computer is proportional to the cost of the computer

multiplied by the amount of time used. Hence the total cost of a computation is proportional

to the number of processors in the computer times the amount of time required to complete all

computations. This last product is the work of an algorithm.

Fundamental lower bound TpTpTp Note that in the best case, the total work required by the

algorithm is evenly divided between the p processors; hence in this case the amount of time taken

by each processor is evenly distributed as well. Fundamentally, Tp is lower bounded by

T1

p
≤ Tp,

where the equality gives the best case scenario.3 This is the lower bound we are trying to achieve

as algorithm designers. We now build theory in order to determine a useful upper bound on Tp.

Relating Depth to PRAM with Infinite Processors In establishing theory, it’s relevant to

ask: what happens when we have infinitude of processors? One might suspect the compute time

for an algorithm would then be zero. But this is often not the case, because algorithms usually

have an inherently sequential component to them.

3To see this, assume toward contradiction that Tp < T1/p, i.e. that Tp · p < T1. Note that Tp describes the time it

takes for the entire algorithm to finish on p processors, i.e. the processor with the most work takes Tp time to finish.

There are p processors. Hence if we were to perform all operations in serial it should require at most Tp · p time. But

if Tp · p < T1, then we get a contradiction, for T1 should represent the time it takes to complete the algorithm on a

sequential machine.

4



Figure 3: Example Directed Acyclic Graph (DAG)

1.7 Representing algorithms as DAG’s

It is natural to represent the dependencies between operations in an algorithm using a directed

acyclic graph (DAG).

Constructing a DAG from an algorithm Specifically, each fundamental unit of computation

is represented by a node. We draw a directed arc from node u to node v if computation u is

required as an input to computation v. We trivially note that our resulting graph surely ought

to be connected (otherwise the isolated node[s] represent useless computations), and by definition

it’s acyclic. Hence its a tree. The root of the tree represents the output of our algorithm, and its

children are the dependencies.

Operations in different layers of a DAG can not be computed in parallel Since our

DAG is a tree, it’s natural to talk about levels of the tree. Let the root of the tree (i.e. the output

of the algorithm) have depth 0, its children depth 1, and so on. Suppose mi denotes the number of

operations (or nodes) performed in level i of the DAG. Each of the mi operations may be computed

concurrently, i.e. no computation depends on another in the same layer. Operations in different

levels of the DAG may not be computed in parallel. For any node, the computation cannot begin

until all its children have finished their computations.

How an algorithm is executed on a single machine In a sequential machine, it’s obvious

what we must do to execute an algorithm. We look for the leaves of the tree, since these depend

on no prior computations. We may evaluate all of the leaf nodes and continue through each layer

of the DAG until we reach the root node (i.e. return the output).

How long does it take to execute the algorithm sequentially? Clearly, it takes time propor-

tional to the number of nodes in the graph (assuming each node represents a fundamental unit of

computation which takes constant time). So, we define work to be

T1 = number of nodes in DAG.
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How an algorithm is executed with an infinitude of processors How much time would it

take to execute the algorithm given an infinitude of processors? Clearly, the depth of the DAG. At

each level i, if there are mi operations we may use mi processors to compute all results in constant

time. We may then pass on the results to the next level, use as many processors as required to

compute all results in parallel in constant time again, and repeat for each layer in the DAG. Note

that we cannot do better than this.4 So, with an infinitude of processors, the compute time is given

by the depth of the tree. We then define depth to be

T∞ = depth of computation DAG.

What’s the point of T∞? Nobody has an infinitude of processors available to them! It’s useless

in its own right.

1.8 Brent’s theorem

Theorem 1.1 We claim that with T1, Tp, T∞ defined as above,

T1

p
≤ Tp ≤

T1

p
+ T∞.

Since T1/p optimal, we see that T∞ is in fact useful for giving us a handle on how far off our

algorithm performs relative to the best possible version of the parallel algorithm. In a sense, T∞
itself measures how parallel an algorithm is.

This theorem is powerful, it tells us that if we can figure out how well our algorithm performs on

an infinite number of processors, we can figure out how well it performs for any arbitrary number of

processors. Ideally, we would go through each Tp to get a sense of how well our algorithm performs,

but this is unrealistic.

Proof: On level i of our DAG, there are mi operations. Hence by that definition, since T1 is

the total work of our algorithm,

T1 =

n∑
i=1

mi

where we denote T∞ = n. For each level i of the DAG, the time taken by p processors is given as

T i
p =

⌈
mi

p

⌉
≤ mi

p
+ 1.

This equality follows from the fact that there are mi constant-time operations to be performed

at mi, and once all lower levels have been completed, these operations share no inter-dependencies.

Thus, we may distribute or assign operations uniformly to our processors. The ceiling follows from

the fact that if the number of processors not divisible by p, we require exactly one wall-clock cycle

where some but not all processors are used in parallel. Then,

4One feature that is considered universal across all machines is that at the fundamental hardware level, there is

a discrete clock tick, and each operation executes exactly in sync with the clock. This feature, combined with the

properties of our DAG, explain why the depth is a lower bound on compute time with infinite processors.
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Tp =
n∑

i=1

T i
p ≤

n∑
i=1

(
mi

p
+ 1

)
=

T1

p
+ T∞

So, if we analyze T∞, and if we understand the sequential analysis of our algorithm which gives

us T1, we have useful bounds on how well our algorithm will perform on any arbitrary number of

processors.

We lastly note that using more processors can’t worsen run-time. That is, if p1 > p2, then

Tp1 ≤ Tp2 (since we can always allow some processors to idle). Hence, the goal in the work-depth

model is to design algorithms which work well on an infinitude of processors, since this minimizes

T∞, which in turn gets us closer to our desired optimal bound of T1/p.5

1.9 Parallel summation

How do we add up a bunch of integers? Sequentially, the summation operation on an array can be

described by an algorithm of the form

1 s← 0 for i← 1, 2, . . . , n do

2 s+ = a[i]

3 end

4 return s
Algorithm 1: Sequential Summation

For this summation algorithm T1 = n. So the work of the algorithm is O(n). What’s T2 on this

algorithm? The only correct answer is T2 = n as well, since we haven’t written the code in a way

which is parallel. Further, realize that the depth of the algorithm is O(n), since we have written

it in a sequential order. In fact, T∞ = n. So, if we increase the number of processors but keep the

same algorithm, the time of algorithm does not change, i.e.

T1 = T2 = · · · = T∞ = n.

This is clearly not optimal. How can we redesign the algorithm? Instead of(
(a1 + a2) + a3

)
+ a4 + . . .

we instead assign each processor a pair of elements from our array, such that the union of the pairs

is the array and there is no overlap. At the next level of our DAG, each of the summations from

the leaf-nodes will be added by assigning each pair a processor in a similar manner. Note that if

the array length is not even, we can simply pad it with a single zero. Realize that this results in

an algorithm with depth T∞ = log2 n. Hence by Brent’s theorem,

Tp ≤
n

p
+ log2 n.

5So although processors are a valuable resource, the work-depth model encourages us to imagine we have as many

as we want at our disposal.
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As n → ∞, our algorithm does better since n/p dominates. As p → ∞, our algorithm does

worse, since all that remains is log2 n.

1.10 A remark on associative binary operators

We remark that the analysis above works for any associative binary operator. Finally, we consider

the max operator. It’s associate and binary, and hence we may use a similar analysis as above to

get the same efficiency. However, we can actually achieve T∞ = log log n if we allow one processor

to arbitrarily write in the event of a conflict.
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