Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

Covariance Matrices \& All-pairs Similarity

Reza Zadeh

May 2018, Stanford DAO

(4) Stanford Notation for matrix A

Covariance Matrices and All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

- Given $m \times n$ matrix A, with $m \gg n$.

$$
A=\left(\begin{array}{cccc}
a_{1,1} & a_{1,2} & \cdots & a_{1, n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m, 1} & a_{m, 2} & \cdots & a_{m, n}
\end{array}\right)
$$

- A is tall and skinny, example values $m=10^{12}, n=\left\{10^{4}, 10^{6}\right\}$.
- A has sparse rows, each row has at most L nonzeros.
- A is stored across hundreds of machines and cannot be streamed through a single machine.

(4) Stanford Computing $A^{T} A$

Covariance Matrices and All-pairs similarity

Reza Zadeh

- We compute $A^{T} A$.
- $A^{T} A$ is $n \times n$, considerably smaller than A.
- $A^{T} A$ is dense.
- Holds dot products between all pairs of columns of A.

(3) Stanford Guarantees

Covariance Matrices and All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

There is a knob γ which can be turned to preserve similarities and singular values. Paying $O(n L \gamma)$ communication cost and $O(\gamma)$ computation cost.

- With a low setting of γ, preserve similar entries of $A^{T} A$ (via Cosine, Dice, Overlap, and Jaccard similarity).
- With a high setting of γ, preserve singular values of $A^{T} A$.

(3) Stanford Computing All Pairs of Cosine Similarities

Covariance Matrices and All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

- We have to find dot products between all pairs of columns of A
- We prove results for general matrices, but can do better for those entries with $\cos (i, j) \geq s$
- Cosine similarity: a widely used definition for "similarity" between two vectors

$$
\cos (i, j)=\frac{c_{i}^{\top} c_{j}}{\left\|c_{i}\right\|\left\|c_{j}\right\|}
$$

- c_{i} is the i^{\prime} th column of A

(4) Stanford Example matrix

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

Rows: users.
Columns: movies.

(3)Stanford Distributed Computing Environment

- With such large datasets, we must use many machines.
- Algorithm code available in Spark and Scalding.
- Described with Maps and Reduces so that the framework takes care of distributing the computation.

Naive Implementation

Covariance Matrices and All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results
(1) Given row r_{i}, Map with NaiveMapper (Algorithm 1)
(2) Reduce using the NaiveReducer (Algorithm 2)

Algorithm 1 NaiveMapper $\left(r_{i}\right)$

for all pairs $\left(a_{i j}, a_{i k}\right)$ in r_{i} do
Emit $\left((j, k) \rightarrow a_{i j} a_{i k}\right)$
end for

Algorithm 2 NaiveReducer $\left((i, j),\left\langle v_{1}, \ldots, v_{R}\right\rangle\right)$ output $c_{i}^{T} c_{j} \rightarrow \sum_{i=1}^{R} v_{i}$

(3) Stanford Analysis for First Pass

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

- Very easy analysis
- 1) Shuffle size: $O\left(m L^{2}\right)$
- 2) Largest reduce-key: $O(m)$
- Both depend on m, the larger dimension, and are intractable for $m=10^{12}, L=100$.
- We'll bring both down via clever sampling
- Assuming column norms are known or estimates available

Dimension Independent Matrix Square using MapReduce

Covariance Matrices and All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

Algorithm 3 DIMSUMMapper $\left(r_{i}\right)$

for all pairs $\left(a_{i j}, a_{i k}\right)$ in r_{i} do
With probability $\min \left(1, \gamma \frac{1}{\left\|c_{j}\right\|\left\|c_{k}\right\|}\right)$
emit $\left((j, k) \rightarrow a_{i j} a_{i k}\right)$
end for

Algorithm 4 DIMSUMReducer((i,j), $\left.\left\langle v_{1}, \ldots, v_{R}\right\rangle\right)$
if $\frac{\gamma}{\left\|c_{i}\right\|\left\|c_{j}\right\|}>1$ then
output $b_{i j} \rightarrow \frac{1}{\left\|c_{i}\right\|\left\|c_{j}\right\|} \sum_{i=1}^{R} v_{i}$
else
output $b_{i j} \rightarrow \frac{1}{\gamma} \sum_{i=1}^{R} v_{i}$
end if

(3) Stanford Analysis for DIMSUM

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

The algorithm outputs $b_{i j}$, which is a matrix of cosine similarities, call it B.
Four things to prove:
(1) Shuffle size: $O(n L \gamma)$
(2) Largest reduce-key: $O(\gamma)$
(3) The sampling scheme preserves similarities when $\gamma=\Omega(\log (n) / s)$
(0) The sampling scheme preserves singular values when $\gamma=\Omega\left(n / \epsilon^{2}\right)$

(3) Stanford Shuffle size for DIMSUM

Covariance Matrices and

All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

Theorem

For $\{0,1\}$ matrices, the expected shuffle size for DIMSUMMapper is $O(n L \gamma)$.

Proof.

The expected contribution from each pair of columns will constitute the shuffle size:

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=1}^{\#\left(c_{i}, c_{j}\right)} \operatorname{Pr}\left[\operatorname{DIMSUMEmit}\left(c_{i}, c_{j}\right)\right] \\
= & \sum_{i=1}^{n} \sum_{j=i+1}^{n} \#\left(c_{i}, c_{j}\right) \operatorname{Pr}\left[\operatorname{DIMSUMEmit}\left(c_{i}, c_{j}\right)\right]
\end{aligned}
$$

(3) Stanford Shuffle size for DIMSUM

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

Proof.

$$
\leq \sum_{i=1}^{n} \sum_{j=i+1}^{n} \gamma \frac{\#\left(c_{i}, c_{j}\right)}{\sqrt{\#\left(c_{i}\right)} \sqrt{\#\left(c_{j}\right)}}
$$

(4) Stanford Shuffle size for DIMSUM

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

Proof.

$$
\begin{gathered}
\qquad \sum_{i=1}^{n} \sum_{j=i+1}^{n} \gamma \frac{\#\left(c_{i}, c_{j}\right)}{\sqrt{\#\left(c_{i}\right)} \sqrt{\#\left(c_{j}\right)}} \\
\left(\text { by AM-GM) } \leq \frac{\gamma}{2} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \#\left(c_{i}, c_{j}\right)\left(\frac{1}{\#\left(c_{i}\right)}+\frac{1}{\#\left(c_{j}\right)}\right)\right.
\end{gathered}
$$

(4) Stanford Shuffle size for DIMSUM

Covariance Matrices and

All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

Proof.

$$
\begin{aligned}
& \leq \sum_{i=1}^{n} \sum_{j=i+1}^{n} \gamma \frac{\#\left(c_{i}, c_{j}\right)}{\sqrt{\#\left(c_{i}\right)} \sqrt{\#\left(c_{j}\right)}} \\
& (\text { by AM-GM }) \leq \frac{\gamma}{2} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \#\left(c_{i}, c_{j}\right)\left(\frac{1}{\#\left(c_{i}\right)}+\frac{1}{\#\left(c_{j}\right)}\right) \\
& \leq \gamma \sum_{i=1}^{n} \frac{1}{\#\left(c_{i}\right)} \sum_{j=1}^{n} \#\left(c_{i}, c_{j}\right)
\end{aligned}
$$

(4) Stanford Shuffie size for DIMSUM

Covariance Matrices and

All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

Proof.

$$
\begin{aligned}
& \leq \sum_{i=1}^{n} \sum_{j=i+1}^{n} \gamma \frac{\#\left(c_{i}, c_{j}\right)}{\sqrt{\#\left(c_{i}\right)} \sqrt{\#\left(c_{j}\right)}} \\
(\text { by AM-GM }) & \leq \frac{\gamma}{2} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \#\left(c_{i}, c_{j}\right)\left(\frac{1}{\#\left(c_{i}\right)}+\frac{1}{\#\left(c_{j}\right)}\right) \\
& \leq \gamma \sum_{i=1}^{n} \frac{1}{\#\left(c_{i}\right)} \sum_{j=1}^{n} \#\left(c_{i}, c_{j}\right) \\
& \leq \gamma \sum_{i=1}^{n} \frac{1}{\#\left(c_{i}\right)} L \#\left(c_{i}\right)=\gamma L n
\end{aligned}
$$

(4) Stanford Shuffle size for DIMSUM

Covariance
Matrices and
All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

- $O(n L \gamma)$ has no dependence on the dimension m, this is the heart of DIMSUM.
- Happens because higher magnitude columns are sampled with lower probability:

$$
\gamma \frac{1}{\left\|c_{1}\right\|\left\|c_{2}\right\|}
$$

(3)Stanford Shuffle size for DIMSUM

Covariance
Matrices and
All-pairs
similarity
Reza Zadeh

- For matrices with real entries, we can still get a bound
- Let H be the smallest nonzero entry in magnitude, after all entries of A have been scaled to be in $[-1,1]$
- E.g. for $\{0,1\}$ matrices, we have $H=1$
- Shuffle size is bounded by $O\left(n L \gamma / H^{2}\right)$

(4) Stanford Largest reduce key for DIMSUM

Covariance
Matrices and
All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

- Each reduce key receives at most γ values (the oversampling parameter)
- Immediately get that reduce-key complexity is $O(\gamma)$
- Also independent of dimension m. Happens because high magnitude columns are sampled with lower probability.

(3) Stanford Correctness

Covariance
Matrices and
All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

- Since higher magnitude columns are sampled with lower probability, are we guaranteed to obtain correct results w.h.p.?
- Yes. By setting γ correctly.
- Preserve similarities when $\gamma=\Omega(\log (n) / s)$
- Preserve singular values when $\gamma=\Omega\left(n / \epsilon^{2}\right)$

(4) Stanford Correctness

Covariance Matrices and All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

Theorem

Let A be an $m \times n$ tall and skinny $(m>n)$ matrix. If $\gamma=\Omega\left(n / \epsilon^{2}\right)$ and D a diagonal matrix with entries $d_{i j}=\left\|c_{i}\right\|$, then the matrix B output by DIMSUM satisfies,

$$
\frac{\left\|D B D-A^{T} A\right\|_{2}}{\left\|A^{T} A\right\|_{2}} \leq \epsilon
$$

with probability at least $1 / 2$.
Relative error guaranteed to be low with constant probability.

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

- Uses Latala's theorem, bounds 2nd and 4th central moments of entries of B.
- Really need extra power of moments.

Covariance Matrices and All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

Theorem

(Latala's theorem). Let X be a random matrix whose entries $x_{i j}$ are independent centered random variables with finite fourth moment. Denoting $\|X\|_{2}$ as the matrix spectral norm, we have

$$
\begin{aligned}
\mathbb{E}\|X\|_{2} \leq C\left[\max _{i}\right. & \left(\sum_{j} \mathbb{E} x_{i j}^{2}\right)^{1 / 2}+\max _{j}\left(\sum_{i} \mathbb{E} x_{i j}^{2}\right)^{1 / 2} \\
& \left.+\left(\sum_{i, j} \mathbb{E} x_{i j}^{4}\right)^{1 / 4}\right] .
\end{aligned}
$$

Prove two things

- $\mathbb{E}\left[\left(b_{i j}-E b_{i j}\right)^{2}\right] \leq \frac{1}{\gamma}$ (easy)
- $\mathbb{E}\left[\left(b_{i j}-E b_{i j}\right)^{4}\right] \leq \frac{2}{\gamma^{2}}$ (not easy)

Details in paper.

(4) Stanford Correctness

Covariance Matrices and All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

Theorem

For any two columns c_{i} and c_{j} having $\cos \left(c_{i}, c_{j}\right) \geq s$, let B be the output of DIMSUM with entries $b_{i j}=\frac{1}{\gamma} \sum_{k=1}^{m} X_{i j k}$ with $X_{i j k}$ as the indicator for the k 'th coin in the call to DIMSUMMapper. Now if $\gamma=\Omega(\alpha / s)$, then we have,

$$
\operatorname{Pr}\left[\left\|c_{i}\right\|\left\|c_{j}\right\| b_{i j}>(1+\delta)\left[A^{T} A\right]_{i j}\right] \leq\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\alpha}
$$

and

$$
\operatorname{Pr}\left[\left\|c_{i}\right\|\left\|c_{j}\right\| b_{i, j}<(1-\delta)\left[A^{T} A\right]_{i j}\right]<\exp \left(-\alpha \delta^{2} / 2\right)
$$

Relative error guaranteed to be low with high probability.

(3) Stanford Correctness

Covariance Matrices and All-pairs similarity

Proof.

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

- In the paper
- Uses standard concentration inequality for sums of indicator random variables.
- Ends up requiring that the oversampling parameter γ be set to $\gamma=\log \left(n^{2}\right) / s=2 \log (n) / s$.
- DIMSUM helpful when there are some popular columns
- e.g. The Netflix Matrix (some columns way more popular than others)
- Power-law columns are effectively neutralized
- Forget about theoretical settings for γ
- Crank up γ until application works
- Estimates for $\left\|c_{i}\right\|$ can be used, expectations still hold, but concentration isn't guaranteed
- If using for singular values, watch for ill-conditioned matrices

(4) Stanford Experiments

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

- Large scale production live at twitter.com

(4) Stanford Experiments

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

Figure: Y -axis ranges from 0 to 100s of terabytes

(4) Stanford Implementation

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

```
// Load and parse the data file.
val rows = sc.textFile(filename).map { line =>
        val values = line.split(' ').map(_.toDouble)
        Vectors.dense(values)
}
val mat = new RowMatrix(rows)
// Compute similar columns perfectly, with brute force.
val simsPerfect = mat.columnSimilarities()
// Compute similar columns with estimation using DIMSUM
val simsEstimate = mat.columnSimilarities(threshold)
```

Figure: Widely distributed with Spark as of version 1.2

(4) Stanford Other Similarity Measures

Covariance Matrices and All-pairs
similarity
Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

Picking out similar columns work for some other similarity measures.

Similarity	Definition	Shuffle Size	Reduce-key size
Cosine	$\frac{\#(x, y)}{\sqrt{\#(x)} \sqrt{\#(y)}}$	$O(n L \log (n) / s)$	$O(\log (n) / s)$
Jaccard	$\frac{\#(x, y)}{\#(x)+\#(y)-\#(x, y)}$	$O((n / s) \log (n / s))$	$O(\log (n / s) / s)$
Overlap	$\frac{\#(x, y)}{\min (\#(x), \#(y))}$	$O(n L \log (n) / s)$	$O(\log (n) / s)$
Dice	$\frac{2 \#(x, y)}{\#(x)+\#(y)}$	$O(n L \log (n) / s)$	$O(\log (n) / s)$

Table: All sizes are independent of m, the dimension.

(4)Stanford Locality Sensitive Hashing

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction

First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

- MinHash from the Locality-Sensitive-Hashing family can have its vanilla implementation greatly improved by DIMSUM.
- Another set of theorems for shuffle size and correctness in DISCO paper.

stanford.edu/~rezab/papers/disco.pdf

(4) Stanford Conclusion

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction
First Pass
DIMSUM
Analysis
Experiments
Spark
More Results

- Consider DIMSUM if you ever need to compute $A^{T} A$ for large sparse A
- Many more experiments and results in paper at
stanford.edu/~rezab

(3) Stanford Combiners

Covariance
Matrices and
All-pairs
similarity
Reza Zadeh

- All bounds are without combining: can only get better with combining
- For similarities, DIMSUM (without combiners) beats naive with combining outright
- For singular values, DIMSUM (without combiners) beats naive with combining if the number of machines is large (e.g. 1000)
- DIMSUM with combining empirically beats naive with combining
- Difficult to analyze combiners since they happen at many levels. Optimizations break models.
- DIMSUM with combiners is best of both.

(A) Stanford Combiners

Covariance Matrices and All-pairs similarity

Reza Zadeh

With k machines

- DIMSUM shuffle with combiner: $O\left(\min \left(n L \gamma, k n^{2}\right)\right)$
- DIMSUM reduce-key with combiner: $O(\min (\gamma, k))$
- Naive shuffle with combiner: $O\left(k n^{2}\right)$
- Naive reduce-key with combiner: $O(k)$

DIMSUM with combiners is best of both.

(4) Stanford Experiments

Covariance Matrices and All-pairs similarity

Figure: As $\gamma=p / \epsilon$ increases, shuffle size increases and error decreases. There is no thresholding for highly similar pairs here.

