
CME 323: Distributed Algorithms and Optimization, Spring 2017

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 9, 5/1/2017. Scribed by A. Santucci.

9 Network Topology

There are all kinds of ways that computers can be connected. Suppose each node a computer. The

below is a sufficient network

x -- x -- x -- x

| |

x -- x -- x -- x

Whats reasonable to assume about connectedness of network? Adding more connections

may avoid bottlenecks, and we can make this a complete graph. This is not realistic, however.

Instead, we sometimes use routers, which are dedicated pieces of hardware specifically designed

to route packets of information to the relevant computers on the network. In this case, it’s as

though there is a direct and unfettered line of communication between any two computers which

are tethered to the same router. This is often the case in our distributed computing set up.

x

/ | \

x x x

In PRAM, we learned how to apply general associative binary operators in logarithmic depth.

Recall bandwidth is the amount of bits per second that can be sent across a pipeline. In a

datacenter, we assume everybody has the same network card, i.e. everybody is connected with 10

gigabit connections; this is the kind of cluster that we would spin up on Amazon AWS, for example.

10 Distributed Summation

Suppose each machine has part of the data in it.

The exact WRONG way to sum up numbers Each machine is a PRAM. We can go to town

with our PRAM algorithm and concurrently sum all of the numbers entries stored locally in each

machine. If there are p machines, why don’t we just communicate them all to one master node and

then aggregate the result?

1

http://stanford.edu/~rezab/dao

Observe that a message of size m with L latency and B bandwidth requires L + pm/B) time.1

Here, m is a single integer, so this is no big deal. But realize the summation operator might not

be operating on just numbers, but possibly vectors. In this case, m can be very large. If you’re

serious about distributed computing, p large as well.

What’s wrong with this approach? If every machine tries to talk to the master, the node that

gets the partial sums, then its network card will be the bottle-neck. We can only transfer data as

fast as the bandwidth allows on said machines network card, B bytes per second. Meanwhile, the

network cards on all other machines lay idle; realize they could be creating partial sums theirselves.

A better way to do summation in distributed environment - Tree aggregation The

proper way is to use bit-torrent broadcasting. The idea is similar to what we observed in PRAM:

pair off machines and have them communicate with each other.

x x x x x

So why not, on the first time step allow m1,m2 talk and in parallel m3,m4, etc. From each pair,

we select exactly one machine to propogate the result to the next level in our tree. So by having

all this bandwidth capacity in the network, we can use ideas from PRAM world to communicate

within the network. When we have a lot of compute resources, we want to take advantage of all

them. We can assume our network topology is a clique within a distributed cluster. So we should

be using as much of the network as possible so as to avoid unecessary bottleneck.

Since we paired machines, there are of course log2(p) rounds of communication before termina-

tion. Each round requires L + m/B, for log2(p) (L + m/B) total shuffle cost.

Notice that we can crank up the base or branching factor to saturate bandwidth. I.e. there’s

no need to pair off computers; we can instruct one machine to recieve data from many machines.

When we do this, in practice (not theoretically) this log p factor is effectively a constant.

This summation algorithm is all-to-one.2

Bit Torrent Broadcasting After all rounds of communication take place, only one machine has

the sum. Very often, right after you’re done with the summation, all the machines need to use this

information! What we need now is a one-to-all broadcast. We use a technique known as bit-torrent

broadcasting to accomplish this.

Fault-Tolerance: where can our system fail? Much of what we have done so far assumes

each machine won’t die. But nothing could be further from the truth. There is a listing of things

1Note that depending on the network, this could be p(L+m/B); the latencies go away if there is a nice queueing

structure that is available in the network that may not typically be avilable. In any case, L is on the order of 1-2

milliseconds for a local network, or a couple hundred milliseconds across the world. We hit fundamental limitations

because the speed of light is a physical constant, and we can’t transfer physical information or data any faster than

that.
2Don’t confuse network topology with communication patterns. In this class, we always assume all the machines

are fully connected i.e. our network topology is a complete graph.

2

that go wrong in distributed computing systems. We’ve totally ignored failures. Problems with

traditional network programming:

1. Machine failures. If you have 1,000 machines, you can bet than several will die on any given

day. This could be something like a hard-disk failure. How do we handle faults? Typically,

we might write a temporary snapshot of work in progress to a distributed file-system, in at

least several places, such that it can be retrieved if need be.

2. Disk and memory interface has been largely ignored. Last class we saw a streaming algorithm

for randomly sampling an observation. We need to deal with the fact that memory access is

orders of magnitude faster than hard-disk access.

3. Communication costs. Even analyzing our simple distributed summation was non-trivial: we

must distinguish between all-to-one and one-to-all. We will later analyze all-to-all communi-

cation patterns when we tackle distributed sorting.

4. Multiple programs must be written for fault tolerance: one program for failures, one for

failures, one for scheduling and putting code where it needs to be, and also data locality.

Out of all these problems, the last is the biggest nuissance. This listing describes why distributed

computing is difficult. Instead of solving each one of these, we commit to SQL like programming

languages and abstract away our computations into a new programming language that then solves

these problems for us.3 The first example was map-reduce. At a basic level, map-reduce just

implements sorting, itself an all-to-all communication protocol. Sorting is powerful, and can be

used as a building block for other algorithms. There are a cottage industry of people who build

algorithms on top of just map-reduce. At some point, we decided just sorting wasn’t enough. So, we

developed tools like Hive and PIG which take regular-looking SQL and create map-reduce jobs from

it. Another more recent example is SPARK, which combines SQL with functional programming

and better memory management.

A note on last lecture

Going back to last class’s quicksort failure analogy. Last class, we talked about why quicksort fails.

Sorting is so fundamental to all-to-all communication patterns. We had something like

Quicksort(A) select a pivot p uniform at random L ¡- all items less than p R ¡- all items greater

than p return (QSort(L), p, QSort(R)) END

Machines numbered 0, 1, 2, We want the first k items to be on machine 1, and the next k

items to be on machine 2, etc. I.e. we need a sorting within and across machines.

The assumptions of quicksort in a distributed environment are the following.

• Data are split between machines.

3Much like assembly language is a hassle to deal with, where instead we’ve abstracted away and written for-

loops and if-else branching. There are compilers that will take our SQL queries and make them fault-tolerant in a

distributed computing world.

3

• Result needs to be output to all machines.

So these two assumptions must be true for Quicksort algorithm as well. What does this mean

in terms of our recursive calls? Well, when ‘Quicksort(L)‘ returns, it may have moved around all

the data from one machine to another. In the worst case, it may have to move all items to land on

the correct machine. In our recursion, we can have lots of calls to ‘QSort‘. In reality, at each level

in the recursion, the entire data may be shuffled. In worst case, with each recursion level, all data

gets shuffled. This is not acceptable; we can do much better.

4

	9 Network Topology
	10 Distributed Summation

