
CME 323: Distributed Algorithms and Optimization, Spring 2017

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 8, 4/26/2017. Scribed by A. Santucci.

8 Introduction to Distributed Computing

We’re all familiar with the PRAM by now. What does it look like? We have one block of RAM,

connected to a bunch of CPUs, all on a single machine.

RAM

p0 p1 p2

hard disk

In this case, one thread has access to their own processor, pi, and all processors have access to

RAM. Even in the PRAM world, we we still must pull the data in from disk; it’s possible to stream

data directly from disk. The reason we have to use multiple computers now, is because whatever

data we have can’t fit on a single machine (or single hard-drive).

RAM

hdisk

RAM

hdisk

RAM

hdisk

RAM

hdisk

RAM

hdisk

We call the above a cluster of machines.

Assumptions

• Data has been sharded between machines.1

• Network calls are expensive. I.e. network latency and bandwidth are much faster intra-

machine than inter-machine.

These are the two main challenges which arise when trying to distribute algorithms.

1How we partition the data matters, but for now just understand that the data are split between machines.

1

http://stanford.edu/~rezab/dao 


Observations It is still the case that Tp ≥ T1
p , where now p is the total number of processors

available in the cluster. Before, in PRAM, we also had the bound that Tp ≤ T1
p + T∞; Brent’s

theorem assumed we had greedy scheduling where the data was locally available.2 We no longer

have this assumption.

Just how large is the difference between RAM and hardisk?

• Random access lookup

– Main memory on a piece of RAM can take 100 nanoseconds to pick up a piece of data

– A hard disk3 can take 10 million nanoseconds to fetch the same data, i.e. 100k× slower.

• Sequential access lookup

– Reading one megabyte from RAM: 1/4 million nanoseconds

– Reading one megabyte from disk: 30 million nanoseconds, i.e. 100x slower

The more data we are reading, the difference between sequential RAM and disk reads shrinks,

but the order of magnitude difference is still there. We need to start dealing with this now, even for

our algorithms on a single machine. This dramatic difference gives rise to a model of computation

called streaming or online algorithms. The basic idea is that data comes at you in a stream, and

you are allowed to maintain some amount of state (much smaller than the amount of data you

consume) in RAM, and at termination, state outputs results.

9 Simple random sampling

On a single machine, if we want to sample an observation uniformly at random, it suffices to first

generate a random number between 0 and n − 1, the number of observations we have, and then

pick an element from our data according to this index. If we know how much data is going to show

up, we can just generate a random number and be done with it. Very often, however, we don’t

know how much data is coming at us; it comes from a mix of disk, network, etc, but we still have

to sample one element.

When is this useful One situation this is useful: suppose you’re reading from the Twitter

firehouse. There are gigabytes of data coming in per second. You can’t keep all this data around

and then randomly sample from it.

Realize that since we only store values of r and k, our algorithm technically only uses a loga-

rithmic amount of memory. Note that technically it’s not a constant amount of memory, because

k stores the length n of the stream and therefore we require log2(n) bits to represent said number.

2Recall we proved Brent’s theorem by assigning all computations on one level of our DAG to a bunch of processors.

Notice that now processors don’t have access to all the data, and so we may have to incur a shuffle cost. We don’t

yet have a nice analagous upper bound in the distributed computing framework.
3not a solid state disk

2



1 Initialize return value r as empty, and stream counter k as 1.

2 while stream is not yet empty do

3 Read an item from the stream, and flip a coin with probability 1/k.

4 if coin comes up heads then

5 r ← s

6 end

7 Increment k

8 end

9 return r
Algorithm 1: Sampling from a stream uniformly at random

Correctness We claim that after n items have been read, the value stored in r has equal proba-

bility 1/n of being any of these n items. We prove the claim via induction. The base case is trivial,

since when n = 1 our stream size will have counter value k = 1, and so r will be set to the first

element in the stream with probability 1/k = 1, hence r correctly represents a random sample from

the singleton set containing only the first item in the stream.

For the inductive step, we assume that our claim holds for a stream up to length n−1. Consider

the state of the algorithm after the nth item is read from the stream and processed. Our stream

size counter has value k = n, and so r will be set to the newest element of the stream with

probability 1/n, and we leave r changed with probability (n − 1)/n. We wish to show that r has

equal probability of being any of the stream items seen so far, i.e. that Pr(r = si) = 1/n for all

i = 1, . . . , n, where si is the ith item of the stream. We just showed that r has value sn with

probability 1/n, i.e. Pr(r = sn) = 1/n. What about Pr(r = si) for i < n? If r was not replaced on

the most recent step, it had the same value as it had after n−1 steps. By the inductive hypothesis,

this value of r represents a sample uniform at random from the first n− 1 items of the stream, i.e.

Pr(r = si = 1
n−1 for i = 1, . . . , n− 1. Since r is not replaced with probability (n− 1)/n, we see that

Pr(r = si) =
n− 1

n
· 1

n− 1
=

1

n

for all i = 1, . . . , n− 1. Hence after n items have been read from the stream, we have Pr(r = sn) =

1/n for every i = 1, . . . , n. This completes the inductive step.

What would happen if we implement quick-sort on a cluster? Recall how quicksort works.

We started off with a pivot, selected uniformly at random. We then constructed L and R for items

less than or greater than pivot p respectively, and then we return the concatenation of sorted L,

pivot p, and sorted R.

Now, suppose we’re in distributed computing world. Say we have B = 5 machines, where each

machine has 1/5 of the numbers that we need to sort. We first need to randomly pick a pivot p.

From each machine, we can pick out a sample, to get give samples. Based on a weighted index

of how many elements are on each machine, we must choose one of these five elements at random,

with weights depending on representative size of sample. OK, so we can pick out a pivot.

3



Now, constructing L and R. Is there even room to copy our data? We can’t afford this. But

even if we could, what does it mean to recursively call quicksort on each machine’s L and R.

Suppose even we could do this, then when the result is ready we must return the result in a sorted

manner. But where do we even place the result? It can’t fit on a single machine. We can’t even

make a recursive call if our input data on different machines. Recursion in general suffers from

this problem in a distributed computing framework: it requires too much overhead incurred from

preparing and returning function inputs and outputs.

9.1 Communication Protocols

Several communication patterns exist between machines:

• All to one

• One to all

• All to all

We introduce their communication patterns and the associated communication costs.

9.1.1 All to one communication with driver machine

Computation is distributed among multiple machines and the results are sent to a single driver

machine, as shown in Fig.1. Assume all machines are directly connected to driver machine the

bottleneck of this communication is the network interface of driver machine. Let p be the number

of machines (excluding driver), L be the latency between each pair of machines and the network

interface of driver machine has bandwidth B. Assume all machines send a message of size M to

the driver and driver ’s network interface is saturated by every single message. i.e. machines queue

up to send messages one at a time.

Each single message sent has cost:

L +
M

B

Thus the overal communication cost is:

p

(
L +

M

B

)
9.1.2 All to one communication as Bittorent Aggregate

Another algorithm for all to one communication is known as Bittorent Aggregate. As in one to all

communication computation is distributed among multiple machines but the results are aggregated

through the communication between each pair of machines. The aggregation pattern can be seen

as a tree structure or as depicted in Fig.2. Assume we are aggregating results from p machines,

the results can be aggregated to a single machine in log2 p rounds. Let L be the latency and B be

4



Figure 1: All to one communication with driver machine

Figure 2: All to one communication with Bittorent Aggregate

the bandwidth between each pair of machines and in each aggregation round a message of size M

is sent between machine pairs. The total communication cost is:

(log2 p)

(
L +

M

B

)

9.1.3 One to one communication

One to all communication has the same network configuration as all to one communication only with

opposite data flow directions. The driver machine sends messages of size M to p other machines

and driver machine’s network interface is still the bottleneck of communication. Communication

cost is the same as one to all communication with driver machine.

Also, we can borrow the concept of Bittorent Aggregate such that the message is relayed among

machines in tree structure. Then the message can be spread among all machines within O(log n)

5



rounds.

9.1.4 All to all communication

There are situations where all machines have to communicate with each other. Sorting is one

example that requires all to all communication. Assume we have a large number of integers which

is exceeds the storage of a single machine. The numbers are shuffled and distributed among multiple

machines, each machine cannot determine the correct order of its numbers with communication with

all other machines.

Some, but not all problems require all to all communication and it’s valuable to find them.

Relational database operations JOIN and GROUPBY are two other examples. In fact these two

operations are implemented by sorting in many real world applications.

6


	8 Introduction to Distributed Computing
	9 Simple random sampling
	9.1 Communication Protocols
	9.1.1 All to one communication with driver machine
	9.1.2 All to one communication as Bittorent Aggregate
	9.1.3 One to one communication
	9.1.4 All to all communication



