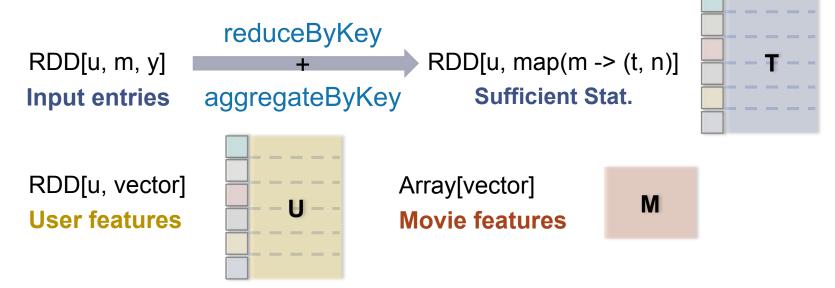
GENERALIZED LINEAR MODELS IN COLLABORATIVE FILTERING

HAO WU STANFORD UNIVERSITY

Collaborative Filtering


	Alt. Linear Regression	Alt. Logistic Regression
application	direct feedbacks (rating)	indirect feedbacks (click)
distribution	normal	binomial
link function	$oldsymbol{\mu} = \mathbf{U}\mathbf{M}^T$	$\log \left(\mathbf{P}/(1-\mathbf{P}) ight) = \mathbf{U}\mathbf{M}^T$
loss function	square error	logistic loss
sufficient stat.	sum	# of 1s

Generalized Linear Models

$$\min_{\mathbf{U}, \mathbf{M}} \sum_{i=0}^{N} L(y_i, \mathbf{u}_{u_i}^T \mathbf{m}_{m_i}) + \lambda \Big[\alpha (\sum_{i=0}^{n_U} \|\mathbf{u}_i\|_1 + \sum_{i=0}^{n_M} \|\mathbf{m}_i\|_1) + (1 - \alpha) (\|\mathbf{U}\|_F + \|\mathbf{M}\|_F) \Big]$$
s.t. $\mathbf{U} \in \mathbb{R}^{n_U \times k}, \ \mathbf{M} \in \mathbb{R}^{n_M \times k}$

Distributed Algorithm

(assuming $n_m \times k$ fits in a single machine)

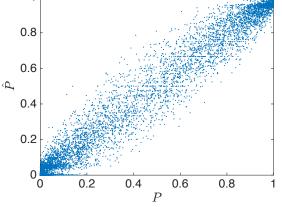
for each iteration:

- Join U with T to from D (co-partitioned join)
- Update **M**
- Broadcast M (communication: log(p)(n_Mk))
- Update U

Update M

for each movie:

- prepare dataframe by filter() and map() on D
- distributed logistic regression
 - LogisticRegression()
 - reduction and broadcast of size k


Update U

Map local logistic regression to users

- added local training method to LogisticRegression()
- no communication of data

Summary

- Sparsity is preserved with condensed entries
- Scales in n_U, but not n_M or k
- Communication cost: log(p)(n_Mk)
- Computational depth: log(n_U)(n_Mk)

