CONVEX HULL - PARALLEL AND DISTRIBUTED ALGORITHMS

Suhas Suresha, Jayanth Ramesh

Stanford University

suhas17@stanford.edu, jayanth7@stanford.edu

June 1, 2016

1 Ultimate Planar Convex Hull Algorithm

- Recursive algorithm employing the divide and conquer approach
- Computes the upper convex hull and lower convex hull
- Divides the space into two halves and finds the edge of upper (lower) convex hull cutting across the half

Sequential

- *n* number of points, *h* number of edges in the convex hull
- Recurrence is $f(n,h) = cn + \max_{h_l+h_r=h} \left(f(\frac{n}{2},h_l) + f(\frac{n}{2},h_r) \right)$
- Upper Hull O(nlogh) Lower Hull
- Overall Work (Worst Case) O(nlogh)
- Scales with *n* and *h*
- Parallel
 - Recurrence is $f(n, h) = c \log^3 n + \max_{h_l+h_r=h} \left(f(\frac{n}{2}, h_l), f(\frac{n}{2}, h_r) \right)$
 - Overall Depth (Worst Case) $O(\log^4 n)$

- Not amenable to distributed scenario
- Divide and conquer paradigm generally not good for distributed systems
- Involves call to a recursive function inside a recursive function

- Approach similar to QuickSort
- Recursive algorithm divides the space into subsets of points
- Removes points which doesn't belong to the convex hull

Sequential

- Each call performs $\mathcal{O}(n)$ work and h such calls
- Overall Work (Worst Case) O(nh)
- Scales with *n* and *h*
- Parallel
 - Each call performs $\mathcal{O}(logn)$ work and h such calls
 - Not amenable to parallelization in the h dimension
 - Overall Work (Worst Case) O(hlogn)
 - Scales with *n* and *h*

- Communication Pattern
 - All to One and One to All All Reduce

Communication Cost

- *m* number of machines, $\frac{n}{m}$ data per machine
- In each call, $\mathcal{O}(m)$ communications
- *h* rounds, so $\mathcal{O}(mh)$ total communications
- Scales only with h
- Work $\mathcal{O}(\frac{n}{m}h)$
- Depth $\mathcal{O}(log(\frac{n}{m})h)$

The End

メロト メロト メヨト メ