EDMOND'S BLOSSOM ALGORITHM

Amy Shoemaker and Sagar Vare

May 31, 2016

CME 323: Distributed Algorithms and Optimization

Blossom Algorithm: to find *maximum matching* in an (undirected, unweighted) graph (as you all already know)

Data structures:

- · Graph node list, Graph edge list
- · Matching node list, Matching edge list
- Forest list of trees (tree node list, tree edge list)

Runtime: $O(n^2m)$

Analysis is tight for (sparse) kite graph

THE PARALLEL BLOSSOM ALGORITHM

- $\cdot\,$ Data structures are largely the same as in the sequential case.
- · Inherently sequential operations:
 - \cdot O(n) from iterations of finding augmenting paths
 - O(n) Blossom recursions
- Wiggle room of O(m) to work with, which can be brought down to O(n) in parallel.
- · Intelligent combining scheme to ensure all possible parallelism.
- Runtime: $T_p \leq O(n^3 + n^2 m/p)$

DISTRIBUTED BLOSSOM ALGORITHM

· Only edges are distributed; we assume O(n) can be stored locally

· Data structures:

FOREST NUDES		
Node	root	parity
1	10	1
2	10	2
3	18	2
4	18	1
5	19	1

FOREST EDGES Node2 Node1 root 1 2 10 2 10 3 18 18 3 5 8 19

- $\cdot\,$ Updates with broadcast to avoid all-to-all communication of joins
- · Analysis:
 - · Communication Cost: $O(n^2m)$
 - · No shuffle cost! No joins!
 - · Computational Complexity: $O\left(\frac{n^4}{p}\right) =$

$$\underbrace{o(n)}_{\text{iterations}} * \left[\underbrace{o(n)}_{\text{Blossom Recursion}} * \sum_{v \in \text{Forest Nodes}} \left(\underbrace{o\left(\frac{n}{p}\right)}_{\text{CASE 1}} + \underbrace{o\left(\frac{n}{sp} + \frac{\deg v}{p}\right)}_{\text{CASE 2}} \right) + \underbrace{o\left(\frac{n}{p}\right)}_{\text{CASE 3}} \right]$$

RESULTS

QUESTIONS?