
Distributed	CUR	Decomposition	
for	Bi-Clustering

Stephen	Kline,	Kevin	Shaw
June	1,	2016

{sakline,	keshaw}@stanford.edu
Stanford	University,	CME	323	Final	Project

CUR	as	alternative	to	SVD	– e.g.	Biclustering

Complete	ratings	
for	select	Users

Complete	ratings	for
select	Movies

Movie	 Ratings
sparse	 /	huge

SVD	– accurate	but	heavy,
Less	 interpretable	(rotated	space)

CUR	– less	 accurate	but	light,
More	interpretable*

*	As	archetypal	 users	and	movies

1

Movies

Us
er
s

User-Movie	 Biclusters

Biclustering was	originally	 developed
in	the	context	of	DNA	microarrays

Biclustering also	has	potential	 in	other
areas	and	has	 added	interpretability

Source:	Source	Code	for	Biology	
Medicine	(April	2013)	- "The	non-
negative	matrix	factorization	
toolbox	for	biological	data	mining"

Review	of	SVD:	A	=	U∑VT

• PRO	- High	accuracy
o k	singular	 values/vectors	 produce	 the	best	k-rank	

approximation	 to	A

• CON	 - High	computation	/	space	requirements
o In	our	 biclustering	 application	with	MovieLens	

data,	the	distributed	 SVD	is	 “roughly	square”	 -
ARPACK	 (vs.	“tall	and	skinny”	 – ATA	trick)

dense	 /	fulldense	 /	full

A
sparse	 /	huge

dense
big

dense	 /	big
sparse	/	small

2

Background	on	A	=	CUR

• CUR	trades	accuracy…				
... for	computation	/	
space	savings

• C/R =	cols/rows	 from	A
• U =	pseudo-inverse	 of	W	

(intersection	of	 C	and	R)

C

R

sparse
big

sparse	 /	big
dense	/	small

A
sparse	 /	huge

Pinv() Intersection	of	 C	and	R	(call	it	W,	very	small)

• Col/RowSelect()	 alg	samples	w/	
replacement (allows	duplicates)

• Pinv(W)	 calculated	via	SVD(W)

• Accuracy	better	for	large	data	sets

3

Design	Decisions	for	Distributed	CUR

C

R

sparse
big

sparse	 /	big
dense	/	small

A
sparse	 /	huge

Key	Design	
Decision:
Distribute	two	
instances of	A	
avoiding
future	all-to-all	
communications

Only	 necessary	 to	store	C	and	R	as	set	of	indices	 into	ACompute	 U	locally

There	are	multiple	 variations	 of	
CUR.		We	selected	 the	algorithm	as	
presented	 in:	Drineas,	 et.	al.,	2006.	
"Fast	Monte	Carlo	Algorithms	 for	
Matrices	III"	which	(for	example)	
does	 not	remove	duplicate	
cols/rows as	some	others	 do.

4

Serial	vs.	Distributed	CUR	- Asymptotics

• Build	C	and	R:
o Generate	probabilities	– O(mn)
o Create	C	matrix	– O(mk)
o Create	R	matrix	– O(nk)

• Construct	U
• Compute	CTC	– O(mk2)
• SVD	of	CTC	– O(k3)
• Compute	A	and	B	– O(k3)
• U	=	ABT – O(k3)

5

• Build	C	and	R:
• Generate	probabilities	– O(mn +	p)	cost,	O(max	dense)	time

o Create	2	RDDs	by	Row/Col	partition	– O(mn)	cost,	AtoA
o Both	instances:	reduce	to	Row/Col	sums	—

O(max	dense)	time,	no	communication
o One	instance:	reduce	Row	sum	to	total	– O(p)	cost,	O(log	p)	time
o Broadcast	total	to	calculate	probs – O(p)	cost,	O(log	p)	time

• Create	C	/	R	matrices
o Locally	sample	k	rows/cols	– O(k)
o Broadcast	sample	to	RDDs	– O(pk)	cost,	O(k	log	p)	time

• Construct	U
• Same	as	Serial	(less	opportunity	to	distribute)

Serial Distributed	 (communication	 cost and	computation	 time)

Biclustering:	Distributed	CUR	vs	SVD	- Empirics

6

