Distributed CUR Decomposition for Bi-Clustering

Stephen Kline, Kevin Shaw June 1, 2016 {sakline, keshaw}@stanford.edu Stanford University, CME 323 Final Project

CUR as alternative to SVD – e.g. Biclustering

* As archetypal users and movies

1

Review of SVD: $A = U\Sigma V^T$

dense big

- PRO High accuracy
 - k singular values/vectors produce the best k-rank approximation to A
- CON High computation / space requirements
 - In our biclustering application with MovieLens data, the distributed SVD is "roughly square" -ARPACK (vs. "tall and skinny" – A^TA trick)

Background on A = CUR

Design Decisions for Distributed CUR

4

Serial vs. Distributed CUR - Asymptotics

Serial	Distributed (communication cost and computation time)
Build C and R:	Build C and R:
 Generate probabilities – O(mn) 	 Generate probabilities – O(mn + p) cost, O(max dense) time
\circ Create C matrix – O(mk)	\circ Create 2 RDDs by Row/Col partition – O(mn) cost, AtoA
\circ Create R matrix – O(nk)	 Both instances: reduce to Row/Col sums —
	O(max dense) time, no communication
Construct U	\circ One instance: reduce Row sum to total – O(p) cost, O(log p) time
• Compute $C^{T}C - O(mk^{2})$	\circ Broadcast total to calculate probs – O(p) cost, O(log p) time
 SVD of C^TC – O(k³) 	Create C / R matrices
 Compute A and B – O(k³) 	 Locally sample k rows/cols – O(k)
• $U = AB^T - O(k^3)$	 Broadcast sample to RDDs – O(pk) cost, O(k log p) time
	Construct U
	 Same as Serial (less opportunity to distribute)

Biclustering: Distributed CUR vs SVD - Empirics

