Distributed Lasso

SEBASTIEN { DUBOIS, LEVY }

The Lasso

Existing distributed methods

By SGD (Spark)

- Sparsity not guaranteed
- Problem when $p \gg n$
- Coefficient path ?

Shotgun (Distributed Coordinate Descent)

- Too much communication
- Convergence issues (need locks)
- $n \gg p$? (Data stored by column)

Least Angle Regression (LAR)

Algorithm

- Relax the penalty at each iteration
- Add features most correlated with the residual
- Increase coefficients to keep correlation tied

Correlations with residual

Computations

- Dot products between columns
- k x k matrix inversion
- min(n,p) iterations

 $\delta_k \leftarrow (X_{A_k}^T X_{A_k})^{-1} X_{A_k}^T r_k$

New coefficient direction

Distributed LAR

Tall and Skinny $p \ll n$

- *p*² fits in memory,
 n does not
- Data stored by rows
- *B* machines, I iterations:
 - Communication: $O(p^2B)$
 - Computations: $O\left(pI\left(p + \log(B) + \frac{n}{B}\right)\right)$

Small and Fat $p \gg n$

- n² fits in memory,
 p does not
- Data stored by columns
- *B* machines, I iterations:
 - Communication: $O(n^2B)$
- Computations: $O\left(nI\left(n + \log(B) + \frac{p}{B}\right)\right)$

Almost Square

 $p \sim n$

- p and n fit in memory, n^2 and p^2 do not
- If I < \sqrt{n} both methods work
- More iterations:
 - Inversion using distributed block matrix
 - SGD to solve linear system
 - Forward Stagewise