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STRUCTURE OF DISTRIBUTED ALGORITHM
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ANALYSIS
Vanilla Q-learning v.s. Distributed Q-learning

• All-to-one structure
• Samples from interacting with environment are distributed. (N → N/p)
• Convergence to optimal policy can be accelerated. ( > p times faster)
Since samples can cover the environment more uniformly.

• Per iteration,

Work Depth

Make Decision
(on each learner) O(|A|) O(log(|A|))

Update Q O(p) O(log(|p|))
Total Shuffle Size O(p|A|)
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EXPERIMENTAL RESULTS
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< p=10, iter=30 > is better than <p=1, iter=300 > by reward 0.73 > -0.058.
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