A DISTRIBUTED IMPLEMENTATION OF REINFORCEMENT LEARNING

YI-CHUN CHEN AND YU-SHENG CHEN MAY 31, 2016

Figure: Vanilla Q-learning

Figure: Vanilla Q-learning

Figure: Distributed Q-learning

ANALYSIS

Vanilla Q-learning v.s. Distributed Q-learning

- All-to-one structure
- Samples from interacting with environment are distributed. ($N \rightarrow N/p$)
- Convergence to optimal policy can be accelerated. (>p times faster) Since samples can cover the environment more uniformly.

ANALYSIS

Vanilla Q-learning v.s. Distributed Q-learning

- All-to-one structure
- Samples from interacting with environment are distributed. ($N \rightarrow N/p$)
- Convergence to optimal policy can be accelerated. (>p times faster) Since samples can cover the environment more uniformly.
- Per iteration,

	Work	Depth
Make Decision (on each learner)	O(A)	O(log(A))
Update Q	O(p)	O(log(p))
Total Shuffle Size	O(p A)	

EXPERIMENTAL RESULTS

EXPERIMENTAL RESULTS

2Cumulative Reward p=1 p=3 _ _ _ ---- p=10 0 -1100200300 0 Number of Iterations

EXPERIMENTAL RESULTS

< p=10, iter=30 > is better than < p=1, iter=300 > by reward 0.73 > -0.058.