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Figure: Vanilla Q-learning
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ANALYSIS 3

Vanilla Q-learning v.s. Distributed Q-learning
+ All-to-one structure
+ Samples from interacting with environment are distributed. (N — N/p)

+ Convergence to optimal policy can be accelerated. ( > p times faster)
Since samples can cover the environment more uniformly.
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+ Convergence to optimal policy can be accelerated. ( > p times faster)
Since samples can cover the environment more uniformly.

+ Per iteration,

Work Depth
Make Decision
(on each learner) O(|Al) - Olog(]Al))
Update Q O(p)  O(log(lpl))

Total Shuffle Size O(p|A|)
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< p=10, iter=30 > is better than <p=1, iter=300 > by reward 0.73 >-0.058.



