Parallelizing and Optimizing the Held-Karp Algorithm for Hamiltonian Circuits

Erik Burton

CME 323: Distributed Algorithms and Optimization

The Held-Karp Algorithm:

Graph = (V,E). Adjacency Matrix A. A[i,j] = 1 iff (i,h) \in Edges.

Algorithm: Base Case: if S = {c}, then D(S, c) = A[1,c].

Recursive step: $D(S, c) = \min_{x \in S-c} (D(S - c, x) + A[x,c])$

Initial call: $M = \min_{c \in \{2,...,N\}} (D(\{2,...,N\}, c) + A[c,1])$

Parallel and Optimized:

Challenges in Parallel:

- Pursuing promising paths (not going broad)
- Avoiding duplicate work
- Retain efficiency, O(1) per processor per step.
- Approach optimality with a reasonable #processors

Solutions:

- Last in First out Queue behavior (similar to depth first search)
- Efficient backtracking, and noting attempted paths (requires arbitrary CRCW machine)
- Groups of processors that work cooperatively

Result Overview:

Algorithm	Work (worst)	Depth (worst)	E[Work] ^[1]	E[Depth] ^[1]	Size (worst)	E[Size]	#Processors needed ^[1]
Held-Karp (1962)	O(n2 ⁿ)	NA	$Ω(n^2)$ ^[III]	NA	O(n2 ⁿ)	Ω(n ²) [111]	NA
McKensie- Stout (1993)	0(n2 ⁿ)	O(n2 ⁿ)	0(n)	O(log*(n))	0(n2 ⁿ)	$\Omega(n+ A)$	0(n/log*(n))
Parallel- Queue (today)	O(n2 ⁿ)	O(n) ^[11]	O(Pn)	O(n)	O(n2 ⁿ)	O(n+ A)	O(√n)

^[1] Expected values given the number of processors in the last column.

^[III] Lower Bound when p < ½ when cycle exists. Depends on p; haven't finalized proof. ^[11] Depth running a worst case graph with infinite available processors