Distributed Graph Coloring

Jane Bae

CME 323 Final Project
June 1, 2016

How to color a graph?

Given a graph $\boldsymbol{G}=(\mathrm{V}, \mathrm{E})$ with $|\mathrm{V}|=\mathrm{n}$, and maximal degree Δ, there is always a $\Delta+1$ coloring.

Naïve Algorithm

- Color the graph with n colors
- Reduce the colors down to $\Delta+1$
- Requires $n-\Delta-1$ iterations.

Depth: $\mathrm{O}(\Delta \log \Delta)$

Total Depth: O(n- $\Delta-1)$

Distributed Algorithm

- Color the graph with n colors
- Reduce to $5 \Delta^{2}$ logn colors with Linial's Algorithm

Depth: $\log ^{*} n+0(1)$

- Reduce the colors down to $\Delta+1$ in parallel
- The number of iterations required becomes $O(\Delta \log \Delta)$ with Kuhn-Wattenhofer reduction
Depth: $\mathrm{O}(\Delta \log \Delta)$
Total Depth: $O(\Delta \log \Delta)+\log ^{*} n$
Communication Cost: $\mathrm{O}(\Delta)$ per processor

