GloVe on Spark

Alex Adamson

Global Vectors for Word Representation (Pennington et. al, 2015)

• Form word representations by factorizing matrix of context-weighted cooccurrence counts:

$$J = \sum_{i,j=1}^{|C|} f(X_{ij}) (w_i^T \tilde{w}_j + b_i + \tilde{b}_j - \log X_{ij})^2$$
$$f(x) = \begin{cases} (x/x_{max})^\alpha & x < x_{max} \\ 1 & \text{otherwise} \end{cases}$$

Distributing GloVe

- Main operations:
 - Full matrix multiplies
 - Dot-products of word vectors, context word vectors
 - Applying chain rule: $W \leftarrow W \eta \cdot (f(X) \circ (W^T \tilde{W} + B + \tilde{B} \log X) \cdot \tilde{W})$
 - Communication not terrible if matrices are partitioned the same (same cols/rows per block)
 - Elementwise multiply/divide, add/subtract, application of Double => Double:
 - Used heavily in computing cost/gradients:

$$\frac{\partial J}{\partial (W^T \tilde{W} + B + \tilde{B} - \log X)} \propto f(X) \circ (W^T \tilde{W} + B + \tilde{B} - \log X)$$

- Can be communication free if both are block matrices, same size, same cols/rows per block
- Keys:
 - Avoiding conversions between matrix types
 - Applying elementwise multiplication by f(X) as early as possible to make cost/partial gradient matrix as sparse as possible before other operations (empty blocks => no multiplication)