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Abstract

This study presents a distributed implementa-
tion of the collaborative filtering method based
on generalized linear models. The algorithm is
based on alternate convex search and presents
efficient scaling with respect to the number of
users. However, it is not parallel in terms of
the the number of items. A sample implemen-
tation focusing on alternating logistic regression
is available on GitHub (Wu, 2016).

1. Introduction
1.1. Generalized linear models

Generalized linear models (GLM) is a generalization of the
ordinary linear regression from the normal distribution to
other distributions in the exponential families (McCullagh
& Nelder, 1989). The family of GLM includes many pop-
ular linear models for regression analysis such as linear re-
gression, logistic regression and Poisson regression.

The basic GLM features two essential model components:

• A probability distribution from the exponential fami-
lies.

• A linear parameter model

The density function of a distribution in the exponential
families in the canonical form can be expressed as

fY (y|η) = h(y) exp(ηTT(y)−A(η)) , (1)

where η is the natural parameters, T(y) is the natural suf-
ficient statistic of the family, and A(η) is the cumulant
function. The cumulant function is closely related to the
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moments of T(y), e.g.

E[T(y)] =
∂A

∂ηT
, (2)

Var[T(y)] =
∂2A

∂η∂ηT
. (3)

As Eq. 2 connects the expectation of T(y) to η, it is con-
ventionaly referred to as the link function in the context of
GLM and is often denoted by g−1(η).

GLM assumes the natural parameter η to be a linear func-
tion of the predictor X, i.e.

η = Xβ . (4)

Therefore, the log-likelihood function for independent
samples is in the from

logL(y|X, β) =
N∑
i=0

xTi βT(yi)−A(βTxi)−log
(
h(yi)

)
.

(5)
Given property in Eq.3 and positive definiteness of the co-
variance matrix, the log-likelihood function is strictly con-
vex with respect to β if the family is minimal.

Note that xTi β involves the data only via the sufficient
statistic T, which will become handy for data reduction
in latter sections. In addition, distributions in the exponen-
tial families have conjugate priors, which is convenient for
Bayesian statistics.

As the exponential families include normal distribution,
multinomial distribution, and poisson distribution, GLM
unifies linear regression, logistic regression and Poisson re-
gression, etc.

1.2. Collaborative Filtering based on alternating least
squares

Collaborative filtering (CF) is a technique used by some
recommender systems aiming to estimate an user-item as-
sociation matrix H. The nu × nm matrix H is often as-
sumed to be of rank k. Thus, it can be written in the fac-
torized from of H = UMT , where U is an nu × k user-
feature matrix and M is an nm × k item-feature matrix.
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The alternating least squares (ALS) based CF Alg. (Koren
et al., 2009) attempts to solve the following minimization
problem

min
U,M

∑
(u,m)∈κ

(yum − uTumm)2 , (6)

where yum is the series of training data representing the
rating of user u of item m and κ is the set of the (u, m)
pairs for which yum is known.

This formulation leads to a biconvex optimization problem,
which can be solved by alternate convex search (ASC). It
alternatively updates U and M while fixing the other. The
update procedure is the same as solving a series of ordinary
least-square problems. Under certain regularity conditions,
the sequence generated by ACS converges monotonically.
The so obtained solution is a partial optimum, but it neither
has to be a global nor a local optimum to the given biconvex
optimization problem, as stationary points can be saddle
points of the given function (Gorski et al., 2007).

2. Generalized linear models in collaborative
filtering

2.1. Maximum likelihood estimation

The CF model based on the ALS algorithm in Sec. 1.2 can
also be formulated in the context of GLM. If the rating data
are independently sample from a normal distribution whose
mean is of low rank, i.e.

yi
iid∼ N (uTui

mmi , σ
2) , (7)

where u and m are the user and item indices associated
with yi, we will have the maximum likelihood estimation
in the form of

min
U,M

N∑
i=0

(yi − uTui
mmi

)2 . (8)

where ui and mi denotes the user and item index of the
i-th entry. Other than allowing multiple entries for a cer-
tain (u, m) pair, this formulation is essentially the same as
Eq. 6.

More generally, if we have the data independently sampled
from a distribution of the exponential family whose natural
parameter is of low rank, i.e.

yuimi

iid∼ D(ηum = uTui
mmi) , (9)

the maximum likelihood estimation can be obtained in the
form

min
U,M

∑
u,m

num

[
− uTummTum +A(uTumm)

]
, (10)

where num are the number of entries generated by user u
on item m and

Tum =
1

num

∑
(ui,mi)=(u,m)

T(yi) (11)

is the corresponding sufficient statistic summarizing these
entries. Therefore, the total number of function evaluations
during the optimization process is determined by the num-
ber of distinct (u, m) pairs instead of number of entries,
which can potentially be orders of magnitude larger de-
pending on the application scenario.

Again, the convexity of GLM ensures that Eq. 10 is bi-
convex. The ASC to this problem involves series of GLM
regressions, whose implementation is likely to be readily
available.

2.2. Regularization

The most common regularization for the CF model based
on the ALS algorithm is the sum of Frobenius norms,

R∗(U, M) =
1

2

(
‖U‖F + ‖M‖F

)
. (12)

The regularization can be interpreted as a normal prior for
U and M. More importantly, it can be related to the nuclear
norm of H (Srebro et al., 2004; Mazumder et al., 2010) as

‖H‖∗ = min
U,M:H=UMT

1

2

(
‖U‖F + ‖M‖F

)
. (13)

Therefore, it is equivalent to using ‖H‖∗ as the regular-
ization term (Hastie et al., 2014). Moreover, this form of
regularization also eliminates the arbitrary scaling between
U and M.

Additionally, if U and M are sparse, we can further regu-
larize the problem by the element-wise L1 norm,

R1(U, M) = ‖U‖1 + ‖M‖1 . (14)

The combination of these two forms of the regularization
gives the matrix form of the elastic-net regularization (Zou
& Hastie, 2005). With this, the problem in Eq. 10 is modi-
fied to be

min
U,M

∑
u,m

num

[
− uTummTum +A(uTumm)

]
+ λ

[
α
(
‖U‖1 + ‖M‖1

)
+ (1− α)1

2

(
‖U‖F + ‖M‖F

)]
.

(15)

The ASC to Eq. 15 then becomes a series of elastic-net reg-
ularized GLM regression, which is again commonly avail-
able.
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2.3. Example: alternating logistic regression

One of the important application of collaborative filtering
is to predict the user behavior based on indirect feedback.
These feedback usually of the binary type. For instance,
online-advertising agency may be interested in predicting
if a user will click a certain (category of) banner ad(s)
based on the past user-ad interaction data which records the
click/no-click history. The probability of the occurrence
of clicking given the impression is called the click-through
rate (CTR).

The clicking behavior of a user u on a certain (category
of) item(s) m is assumed to follow the Bernoulli distribu-
tion with a fixed probability pum = Pr(yi = 1|(ui, mi) =
(u, m)). As the Bernoulli distributions form an exponen-
tial family, we can apply the method introduced in Sec. 2.1,
with the natural parameter

ηum = log
pum

1− pum
= uTumm

(16)

and the regularized maximum likelihood estimation can be
formularized as

min
U,M

∑
u,m

num

[
− uTummTum + log

(
1 + exp(uTumm)

)]
+ λ

[
α
(
‖U‖1 + ‖M‖1

)
+ (1− α)1

2

(
‖U‖F + ‖M‖F

)]
,

(17)

where
Tum =

1

num

∑
(ui,mi)=(u,m)

yi (18)

counts the number of positive entries for a given (u, m)
pair. Consequently, we can use alternating logistic regres-
sion (ALR) to solve this problem. Details of the solution
procedure will be discussed in Sec. 3.

3. Distributed algorithm
3.1. Description

In this section, a distributed algorithm for the alternating
logistic regression problem is discussed. The algorithm is
developed in the Spark framework. Key features of the al-
gorithm include

• efficient scaling with respect to the number of users,

• extensive reuse of the available GLM implementation,

• extendable to other types of distribution of the expo-
nential family.

Algorithm 1 Distributed alternating logistic regression

Input: data: RDD
[
(ui, mi), yi

]
Form sufficient statistic T: RDD

[
(u, map(m, y))

]
Initialize U: RDD

[
(u, Uu)], M: Array

[
Mm]

repeat
D = T.join(U) (co-partitioned)
Update M
Broadcast M
Upate U

until converge

A typical user-item association matrix is assumed, where
the number of users is much greater than the number of
items, which is itself much greater than the rank, nu �
nm � k. We further assume that nm × k is small enough
to fit inside a single machine.

The outline of the algorithm is summarized in Alg. 1. The
input data is in the format of RDD

[
(ui, mi), yi

]
. This

is first transformed into RDD
[
(u, map(m, y))

]
, which

represents the sufficient statistic in Eq. 11. This step is
achieved by reduceByKey and aggregateByKey. It reduces
the number of the entries while preserving the sparsity pat-
tern.

The initial guesses of U and M are generated randomly.
The user feature matrix U is and RDD

[
(u, vector)] co-

partitioned as T. The item feature matrix M is a local array
of vectors.

For each iteration, a co-partitioned join between U and T
is performed. With this, the item feature matrix M is first
updated, followed by broadcasting it to each machine. The
user feature matrix U is updated at the end of the iteration.

The update of item feature matrix M utilizes the distributed
regression model in spark.ml. It consists of nm serial calls
of the regression training method. This procedure is shown
in Alg. 2.

The update of user feature matrix U (Alg. 3) consists of nu
parallel execution of local regression models. This can be
easily achieved via mapping. The implementation of the
local regression models are modified from the distributed
version in spark.ml, by changing the format of the input
data from DataFrame to regular Scala array. The optimiza-
tion method and other features are kept the same.

3.2. Analysis

The analysis assumes the distributed algorithm running on
pmachines, with nu users, nm items. Each user has records
on at most nl items and the total number of entries is N ,
which can be much greater than nunl. The model is as-
sumed to be of rank k.
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ALL-TO-ALL: SHUFFLE SIZE

• Form T: RDD
[
(u, map(m, y))

]
reduceByKey: O

(
min(p · nunl, N)

)
aggregateByKey: O

(
min(p · nunl, N)

)
• Within iteration:

D = T.join(U): co-partitioned, no shuffleing

ONE-TO-ALL / ALL-TO-ONE: COMMUNICATION COST

• Within iteration:

Broadcast M: O
(
log(p)nmk

)
nm rounds of distributed GLM:

copmute gradient: O
(
log(p)nmk

)
OTHER COMPUTATION COST

• Within iteration:

nm rounds of distributed GLM:

L-BFGS: O
(
knm

)
nu parallel local GLM:

copmute gradient: O
(
kL
)

L-BFGS: O
(
k
)

4. Result
A sample implementation featuring the ALR method is a
hosted on GitHub (Wu, 2016).

The implementation is tested using data generated by ran-
dom low rank H matrix. Since the implementation alters
the Spark library, the test is based on a locally-built Spark
with multi-core single machine. A sample estimated prob-
ability using ALR is shown in Fig. 1.

The scaling of computational time with respect toN , k, nl,
nm, nu, and are tested. The results are shown in Fig. 2, 3,
4, 5, 6.

5. Conclusion
In conclusion, a generalization of the collaborative filtering
is proposed using the concept of Generalized Linear Mod-

Algorithm 2 Update of item feature matrix M

Input: D: RDD
[
u, (map(m, (Tum,num)),Uu))

]
for m = 0 to nm do

Filter D with m to construct DataFrame df
Distributed GLM(df)
Update M(m)=GLM.coefficients

end for

Algorithm 3 Update of user feature matrix U

Input: D: RDD
[
u, (map(m, (Tum,num)),Uu))

]
,

M: Array
[
Mm]

U = D.mapValues(v⇒ Local GLM(v, M))

Figure 1. Scatter plot of the true probability verses the estimated
probability using ALR, with mu = 2000, nm = 5, k = 4,
N = 200000.

Figure 2. Scaling to elapsed time with respect to N , k = 2, nl =
10, mu = 1000, nm = 100.

els is proposed. A distributed alternate convex search al-
gorithm to the generalized collaborative filtering problems
is analyzed. The algorithm presents efficient scaling with
respect to the number of users but is not parallel in terms
of the the number of items. A sample implementation fo-
cusing on alternating logistic regression is presented and is
available on GitHub (Wu, 2016).
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Figure 3. Scaling to elapsed time with respect to k, N = 10000,
nl = 10, nu = 1000, nm = 100.

Figure 4. Scaling to elapsed time with respect to nl, N = 10000,
k = 2, nu = 1000, nm = 100.
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