
A Distributed Algorithm for Global Min-Cut

David Flatow
Stanford University

dflatow@stanford.edu

Daniel Penner
Stanford University

dzpenner@stanford.edu

Abstract

In this paper, we present a distributed algorithm to solve the global min-cut problem based on the Karger-Stein sequential
algorithm. Like the Karger-Stein algorithm, the algorithm presented is probabilistic, and outputs the correct global mini-
mum cut with probability 1 − 1

n . We present experimental results which suggest that communication costs do not dominate
computational complexity as the problem size scales.

1. Introduction
1.1. Problem Definition

Given an undirected weighted graph G = (V,E) with |V | = n and |E| = m and edge weights we ≥ 0 for e ∈ E, we
define a cut of G to be a subset S ⊆ V of vertices. The cutsize of S is defined as c(S) =

∑
u∈S

∑
v∈Sc∩Nu

w(u,v), where
Nu = {v ∈ V : (u, v) ∈ E} and Sc = V \ S. We would like to find the cut S with minimal cutsize.

1.2. Karger’s Algorithm

Although other approaches had been developed previously, David Karger’s randomized algorithm, published in 1993, has
proven to be the most enduring published thus far [2]. Each iteration of the algorithm is performed as follows:

function contract(G) {
while |V | > 2 do

choose e ∈ E randomly
G← G \ {e}

end while
return G
}

The result of one iteration is a cut of the graph, whose probability of being the minimum cut is Ω(n−2). Therefore, iterating
O(n2 log n) times gives a lower bound of 1 − 1

n on the probability of finding the minimum cut, and since each iteration
takes O(n2) operations to complete (in some implementations O(m)), we obtain a total runtime of O(n4 log n) runtime, or
O(mn2 log n), depending on the implementation.

1.3. Karger-Stein Algorithm

An alteration to the algorithm proposed in 1996 by Karger and Clifford Stein provided a significant boost in total runtime.
The idea is to cut the number of required iterations per trial by an order of magnitude by simulating many trials in each trial by
branching recursively. More concretely, we run the contraction algorithm twice in parallel, contracting until G has t vertices,
where t is some pre-determined integer, and then recursively call the algorithm on these two graphs of size t, reverting to
brute-force computing mincut for the base case of graphs of size ≤ C for some pre-determined constant C, and keeping the
min of all recursive subcalls as the final answer for the trial. The pseudo-code below describes this process.

function contract(G) {
while |V | > t do

choose e ∈ E randomly

1

G← G \ {e}
end while
return G
}
function karger stein(G) {
if |V | ≤ C then

return mincut(G)
else

return min{karger stein(contract(G, t)), karger stein(contract(G, t))}
end if
}
Choosing t = dn/

√
2e, we get a runtime recursion of T (n) = 2T (n/

√
2) + O(n2), which by Master theorem yields

T (n) = O(n2 log n) per trial. To obtain the same probability bound of success as in Karger’s algorithm of 1− 1/n, we need
to perform only Ω(log2 n) trials, so that we get a total time bound of O(n2 log3 n), a significant improvement.

2. Distributed Algorithm
2.1. Model Assumptions

The graph model we assume in this paper is such that vertices can communicate only with their neighbors in the graph,
and furthermore that vertices have storage linear and computing capacity polynomial in their degree.

2.2. Variable Definitions

As before, we are working with a weighted undirected graph G = (V,E), with non-negative edge weights we ≥ 0 for
e ∈ E. We define Nu = {v ∈ V : (u, v) ∈ E} to be the neighborhood of u ∈ V . In the implementation, each vertex u ∈ V
stores the quantities:

1. the vertex id id(u) ∈ {1, . . . , n}

2. the weights w(u, v) for v ∈ Nu

3. the ranks r(u, v) for v ∈ Nu, randomly set at each iteration

4. the maximum rank max(u) = maxv∈Nu r(u, v), which will be updated

5. the status s(u) = 1, set to zero if w(u, v) = 0 for all v ∈ Nu at any time

6. the group id g(u) = id(u), which is updated as the graph contracts

2.3. Algorithm Summary

As in the sequential Karger’s algorithm, we define a trial below that produces a min-cut with probability bounded below
by n−2, so that the same number of trial as before produces a min-cut with probability bounded below by 1− 1

n .
At the beginning of each trial, we initialize the vertex group id’s and edge ranks. Then we loop over the following until

there remain two groups (this will in general require n− 2 iterations):
First, we find the maximum rank, and broadcast it, along with the id of the maximum rank vertex, over all machines.

Then we filter out the edge with max rank, to contract it, and run connected components algorithm to update the vertex id’s
according to the contraction. Next, we filter out all edges that become self-loops as a result of the contraction (that is, edges
connecting vertices with the same id), by setting their weights to zero.

Finally, once there are two groups remaining, the trial’s guess for the global mincut value is computed by summing the
weights of the remaining edges, and is broadcast via messages to all the vertices.

3. Runtime and Communication Analysis
In the analysis that follows, we recall that n = |V |, m = |E|, and we define K to be the number of machines used, and

M = m/K to be the number of edges stored per machine.

2

First we analyze the computation time per trial. In each iteration, we start by finding the max edge rank. This is done
by finding the max edge in each machine in parallel (O(M) time), and then finding the max rank over all machines’ max
ranks (O(K) time), for a total of O(M + K) time. Then, if (u, v) has max rank, the group ID’s of u, v are broadcast over
all machines. Next, updating vertices’ group ID’s using the broadcast tuple occurs within each machine, and so computation
time is O(M). Finally, we iterate over all edges in each machine and remove those connecting two vertices of the same group
ID, and so the computation time is again O(M). So for each iteration we incur O(M +K) computation time, and since there
are n− 2 = O(n) iterations per trial, each trial takes O(n(M + K)) computation time.

Next we analyze the shuffle size per trial. First, in each iteration, we communicate the max edge rank of each machine to
compute the overall max rank, which causes shuffle proportional to the number of machines, O(K), and then we communi-
cate the final max rank back to each machine, which incurs O(K) shuffle as well. Next, we set the weights of all edges which
have become self-loops to zero. This occurs within each machine so there is no shuffle. So the total shuffle size for each
iteration is O(K), and therefore since there are n− 2 = O(n) iterations per trial, each iteration incurs shuffle size O(nK).

4. Spark Implementation
Our spark implementation takes as input a Graphx graph and returns the global minimum cut value as a double. The

operations, map and reduce, implemented in spark are beautifully suited to our algorithm. In particular, outside of the
operation to find the max rank edge amongst all edges in the graph, all other operations are done using map. This allows for
extreme scalability in terms of distributing the algorithm on a cluster of commodity machines as the communication cost is
minimal. In particular, with combiners, our distributed KS-algorithm has a shuffle size of O(log2(n)nK).

4.1. Data Structures

The workhorse data structure we use in the spark implementation is an RDD of a Triplet data structure that contains
the following fields: srcGroup, dstGroup, rank, weight.

3

4.2. Code

sc . s e t C h e c k p o i n t D i r (c h e c k p o i n t D i r)

c a s e c l a s s T r i p l e t (
s r cGroup : Long ,
ds tGroup : Long ,
we ig h t : Double ,
r ank : Long

)

t y p e MyGraph = Graph [Long , T r i p l e t]

/ / g e n e r a t e random edge r a n k s
d e f genRandRank () : Long = { / /

v a l r and = new Random ()
r and . nextLong () / / TODO make t h i s number o f node

}

/ / c a l c u l a t e t h e minimum c u t f o r a s e t o f edges
d e f c a l c m i n c u t v a l u e (edges : RDD[T r i p l e t]) : Double = {

math . min (edges . map (e =>
i f (e . s r cGroup > e . ds tGroup) e . we i gh t
e l s e 0 . 0)

. r e d u c e (+) ,
edges . map (e =>

i f (e . s r cGroup < e . ds tGroup) e . we i gh t
e l s e 0 . 0)

. r e d u c e (+))
}

d e f c o n t r a c t (edges : RDD[T r i p l e t]) : RDD[T r i p l e t] = {
v a l max rank = edges . r e d u c e ((a , b) => i f (a . r ank > b . r ank) a e l s e b)
v a l o ldGroup = math . min (max rank . s rcGroup , max rank . ds tGroup)

v a l newGroup = math . max (max rank . s rcGroup , max rank . ds tGroup)
edges . map (e => i f (e . ds tGroup == oldGroup) e . copy (ds tGroup =newGroup)

e l s e i f (e . s r cGroup == oldGroup) e . copy (s rcGroup =newGroup)
e l s e e)

. f i l t e r (e => (e . s r cGroup != e . ds tGroup))
}

d e f mincu t (o r i g e d g e s : RDD[T r i p l e t] , numVer t i c e s : Long) : Double = {

v a r components = numVer t i c e s
/ / f i r s t s t a g e c o n t r a c t i o n s

w h i l e (components > 2){
edges = c o n t r a c t (edges)
components −= 1
i f ((components % 500) == 0){

edges . c h e c k p o i n t ()
}

4

}
c a l c m i n c u t v a l u e (edges)

}

d e f f a s t m i n c u t (o r i g e d g e s : RDD[T r i p l e t] ,
numVer t i c e s : Long) : Double = {

i f (numVer t i c e s < 6) {
mincu t (o r i g e d g e s , numVer t i c e s)

} e l s e {
v a l t = math . c e i l (1 + numVer t i c e s / math . s q r t (2)) . a s I n s t a n c e O f (I n t e g e r)
v a r e d g e s o n e : RDD[T r i p l e t] = o r i g e d g e s . map (e =>

e . copy (r ank =genRandRank ()))
v a r e d g e s t w o : RDD[T r i p l e t] = o r i g e d g e s . map (e =>

e . copy (r ank =genRandRank ()))
e d g e s o n e . cache ()
e d g e s t w o . cache ()
v a r components = numVer t i c e s

/ / f i r s t s t a g e c o n t r a c t i o n s
w h i l e (components > t){

e d g e s o n e = c o n t r a c t (e d g e s o n e)
e d g e s t w o = c o n t r a c t (e d g e s t w o)
components −= 1
i f ((components % 500) == 0){

e d g e s o n e . c h e c k p o i n t ()
e d g e s t w o . c h e c k p o i n t ()

}
}
math . min (f a s t m i n c u t (edges one , components) , f a s t m i n c u t (edges two , components))

}
}

d e f m i n c u t (g : MyGraph , t r i a l s : Long) : Double = {
v a r m i n c u t v a l u e : Double = Double . P o s i t i v e I n f i n i t y
v a l b e g i n : Long = 1
v a l n = g . numVer t i c e s
v a l edges = g . edges . map (e => e . a t t r)
edges . cache ()
b e g i n t o t r i a l s f o r e a c h { =>

v a l c u t = f a s t m i n c u t (edges , t , s u b t r i a l s , n)
m i n c u t v a l u e = math . min (m i n c u t v a l u e , c u t)

}
m i n c u t v a l u e

}

d e f run () : Double = {
v a l numVer t i c e s : I n t e g e r = 2000
v a l numEdges : I n t e g e r = numVer t i c e s ∗ (numVer t i c e s − 10)

v a l t r i a l s = math . pow (math . l o g (numVer t i c e s) , 2)
v a l g : MyGraph = G r a p h G e n e r a t o r s . logNormalGraph (sc ,

numVer t i c e s = numVer t i ces , numEParts =32)
. m a p V e r t i c e s ((id ,) => i d)

5

. m a p T r i p l e t s (e => T r i p l e t (e . s rcGroup , e . ds tGroup , e . a t t r , 0))

. s u b g r a p h (e p r e d = t r i p l e t => (t r i p l e t . s r c I d != t r i p l e t . d s t I d))
g . p a r t i t i o n B y (P a r t i t i o n S t r a t e g y . E d g e P a r t i t i o n 2 D)
m i n c u t (g , t r i a l s)

}
run ()

4.3. Discussion

We quickly abandon using the graphx data structure within the implementation of MinCut to avoid any overhead associated
with maintaining the graph structure. For example, when filtering vertices graphx removes edges to ensure the graph remained
valid. Secondly, we since our implementation really only performed operations on triplets we saved greatly by only operating
on RDDs of triplets rather than the entire vertex-cut data structure.

5. Experiments
We ran computational experiments in a distributed utilizing the infrastructure of AWS EC2 instances by way of the

DataBricks environment. Our experiments fell into two classes. First, we ran experiments to determine the effect of increasing
the number of partitions into which the data was distributed. Second, we experimented with distributing the algorithm across
8 machines and recorded the performance differences (in terms of computation time).

5.1. Varying Number of Partitions

To get a handle on the impact of increasing the number of partitions, thus allowing computations to be parallelized within
a machine, we experimented with one and four partitions per machine for equally sized graphs. We ran this experiment on
graphs with (vertex, edge) sizes:

1. Vertices = 500, Edges = 245, 000

2. Vertices = 1000, Edges = 990, 000

3. Vertices = 2000, Edges = 3, 980, 000

The following results show that by utilizing multiple cores on a single we can achieve achieve proportionately faster
processing time. This should not come as a huge surprise to the reader. Rather, this experiment stands to show that our
algorithm is not adversely impacted by partitioning.

5.2. Varying Number of Workers

The most important experiments we ran were comparing the total run time of the algorithm on a single machine cluster
to that of an eight machine cluster. Quite interestingly, we found that going from one machine to eight machines had
roughly same impact as going from one partition per machine to four. Thus we only lose a factor of 2 due most likely to
communication costs when comparing performance on K processors within the same machine to K machines on a network.
This has important implications.

6

6. Conclusion
Our experiments detailed above suggest that as we scale the processing power used to perform the algorithm, the loss

attributed to adding machines instead of adding processors is a constant factor. Thus, the communication costs do not
dominate the algorithm’s complexity as we scale up the graph and, accordingly, the number of machines. Furthermore, since
the algorithm’s complexity is a function of m, it takes advantage of a graph’s sparsity, and should perform much well on
sparse graphs.

References
[1] Shine, S; Murali Krishnan, K. Leveraging social media for scalable object detection. Pattern Recognition 45, 2012.

[2] Karger, D. Global Min-cuts in RNC and Other Ramifications of a Simple Mincut Algorithm. Proc. 4th Annual ACM-SIAM Symposium
on Discrete Algorithms, 1993.

7

