
Distributed Lasso

CME 323 Project Report

Sebastien DUBOIS, Sebastien LEVY

06/05/2016

1



Contents

Introduction 3

1 Lasso Regression 3
1.1 Definition, Penalization and Sparsity . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Sequential Solving Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Gradient Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Coordinate Descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Least Angle Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Parallelization 6
2.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Existing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Using SGD (Spark) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Shotgun (Distributed Coordinate Descent) . . . . . . . . . . . . . . . . 8

2.3 What about Least Angle Regression ? . . . . . . . . . . . . . . . . . . . . . . 8

3 Sequential LARS algorithm 9
3.1 General idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Matrix inversion and Cholesky decomposition . . . . . . . . . . . . . . . . . . 10
3.5 Lasso path from LARS? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 D-LARS for ’Short and Fat’ matrices (n� p) 11
4.1 Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Spark Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 D-LARS for ’Tall and Skinny’ matrices (p� n) 16
5.1 Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 D-LARS for ’Almost Square’ matrices (n ∼ p) 20
6.1 Set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.2 Computing the whole path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

6.2.1 Distributed Cholesky . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2.2 Solving the linear system by gradient descent . . . . . . . . . . . . . . 23
6.2.3 Incremental Forward Stagewise approximation . . . . . . . . . . . . . 24

Conclusion 24

Appendix: Code sample 26

2



Introduction

The Lasso is a simple linear model used to tackle a wide range of machine learning problems.
By adding a L1 penalization to the ordinary least squares, it induces sparsity in the coeffi-
cients, making the algorithm very efficient even when the number of features is bigger than
the number of observations. Another interesting characteristic of the Lasso is its piece-wise
linear coefficient path, which can be leveraged for efficient computations. Although sim-
ple gradient methods can be applied to solve the underlying convex minimization problem,
there exists a couple of exact methods which are as efficient, if not faster. Such methods
are usually preferred in sequential frameworks to guarantee sparsity and compute the whole
coefficient path.

In this project, we propose a distributed algorithm to solve the Lasso based on Least
Angle Regression (LARS). Our algorithm guarantees the sparsity of the solution, can handle
all types of distributed matrices, and computes the whole coefficient path. We show that
the complexity of the proposed algorithm is promising, since the communication cost is
comparable to gradient methods, while providing a useful parallelization of the sequential
version (similar amount of total work, logarithmic depth in the large dimension).

This report is organized as follows. First, we briefly present the Lasso and different
methods to solve it. Then, we discuss various challenges in its parallelization and review
existing attempts to solve the Lasso in distributed frameworks. This leads us to focus on
LARS, which algorithm is detailed in section 3. We finally propose a distributed version
of LARS (D-LARS) for three types of data matrices: ’Short and Fat’ (section 4), ’Tall and
Skinny’ (section 5), and ’Almost Square’ (section 6). In each case, we provide pseudo-code
to reflect the challenges of the implementation, and analyze the complexity in terms of com-
munication cost and computation time. We conclude on why we think the proposed method
is promising by comparing it with existing solutions, especially SGD-based implementations.

1 Lasso Regression

1.1 Definition, Penalization and Sparsity

The Lasso regression is a linear regression with a L1 penalization. The penalization term
added to the ordinary least squares creates bias but decreases the variance. Since the mean
square error (the quantity to minimize) is the sum of the squared bias and variance, we can
often achieve better accuracy by optimizing the regularization coefficient to reach optimal
trade-off.

Compared to other types of penalization, the main advantage of the L1 norm is that it
combines two great advantages, sparsity and convexity. While staying convex and guaran-
teeing a unique minimum, it induces sparsity in the coefficients, i.e. a lot of the coefficients
are zero. This is a real advantage for interpretability, computing time and storage memory.
This type of penalization is also well adapted to cases where p > n. Indeed, there would be
an infinite number of solutions without penalization, but the L1 norm insures uniqueness of
the solution, with at most n predictors in the model (those with non-zero coefficient).

The minimization problem to solve is the following:

argminβ

n∑
i=1

(XT
i β − yi)2 + λ

p∑
j=1

|βj |
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The λ coefficient is the regularization parameter. By changing its value we can find the
coefficient path (the values of each coefficient for every value of λ). It has the particularity
to be piece-wise linear for the Lasso, and slopes change only when a new variable enters the
set of active variables (those with non-zero coefficient).

Figure 1: Example of a Lasso coefficient path (Figure 3.10 in [5])

Besides providing insight on the model and the different importance of features, it can
also ease the search for optimal λ by cross-validation. With the path, we have all the
coefficients for every value of λ.

The interest of studying Lasso extends to other interesting methods. By adding, in
addition to the L1 penalty, an L2 penalty we get the Elastic Net. This version combines
the advantages of Lasso but handles correlated features better. The L1 penalty can also
be added to more complicated methods in a similar way. The most popular are logistic
regression, nearest neighbors, LDA and SVM. It is also used in boosting methods.

1.2 Sequential Solving Methods

1.2.1 Gradient Methods

The simplest way to solve the optimization problem is to simply use any general gradient
based solving method. The convexity of the loss function guarantee to find the global
minimum. Two methods are mostly used to solve this problem: gradient descent and
stochastic gradient descent (SGD). Because the penalty is not differentiable in 0, equivalent
subgradient methods are used.

At each step, the gradient descent method simply computes the gradient of the quantity
to minimize and moves of a step η in the other direction. This will converge quite quickly:
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to get a precision ε, we will need only O
(
log
(

1
ε

))
iterations. However, at each step we

will need to see all the observations making the iterations long, and somehow useless in the
beginning where an accurate estimation of the best direction to go is not essential.

Another alternative, is stochastic gradient descent (SGD) in which we use the fact that
the minimizing function can be written as a sum of differentiable function (except in 0). We
will then compute the gradient of all the elements of the sum and update them one after
the other. At each pass (all the observations give their update), we shuffle the data. This
methods has much smaller iterations but need O

(
1
ε

)
iterations to converge with a precision

ε.
The main advantage of those methods are that they can give a good approximation of

the solution quite rapidly. The methods are really simple, only need the gradient (no order
2 differentials) and are very general. However, on the particular optimization problem of
Lasso, approximating the solution tends to lose the sparsity [7], the solutions won’t have
many zero coefficients but small values instead. Although we could hard threshold the
coefficients, we would still get more computations and more memory needed to store all the
non-zero coefficients. The method is also less adapted to compute the whole coefficient path.
It can use solutions from a close value of λ as a warm start but would still need to solve
many optimization problems and won’t take advantage of the piece-wise linear property of
the path.

1.2.2 Coordinate Descent

Coordinate Descent [3] is the most recent of the successful methods proposed to compute
the Lasso path (and actually to solve any Elastic-Net). This algorithm is known to be very
fast, and is the one used in the well-known R package glmnet.

The basic idea behind coordinate descent is to start with an estimate β̃ and update each
of its entries one by one, using the gradient of the objective function (loss + L1 penalty)
considering all but one entries fixed.

In practice, the coordinate descent algorithm starts with β̃ = 0 (corresponding to an
infinite penalty λ =∞), and slightly decreases the value of the regularization parameter λ
after a solution is found.

This technique has proved to be very efficient because it leverages the fact that most of
the coefficients are zero as well as warm starts, while computing the whole coefficient path.
Therefore, the algorithm must do a lot of iterations (for many different values of λ) but each
of them requires only a few step. This technique also guarantees sparsity in the coefficients.

1.2.3 Least Angle Regression

Least Angle Regression (LARS) is a solving technique based on the computation of the
coefficient path, taking advantage of its piece-wise linear property. It was originally proposed
by Efron et al. [2] as a new forward selection method. The coefficient path it computes was
found out to be very similar to the Lasso path. The path is actually the exact same when
no coefficient crosses zero in the path. By slightly modifying the algorithm (see section 3.5),
the exact Lasso solution can be computed in any cases. Before the emergence of coordinate
descent, it was the main technique to solve this problem.

The algorithms starts with all coefficients to zero, it finds the predictor most correlated
with the residual, and increases its coefficient until another predictor is equally correlated
with the residual. Then, it increases both coefficients in a way that keeps the correlations
tied, until another predictor is equally correlated with the residual, etc . . . This can be
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interpreted as finding the least angle to increase the coefficients. The algorithm is detailed
in section 3.

Figure 2: Progression of the absolute correlations during each step of the LARS procedure,
using a simulated data set with six predictors. The labels at the top of the plot indicate
which variables enter the active set at each step (Figure 3.14 in [5]).

LARS computes the whole coefficient path, but interestingly its complexity is the same
as the resolution of an ordinary least squares. It is also worth noting that the algorithm
performs min(n, p) steps only.

2 Parallelization

2.1 Objectives

In this project we will focus on designing a distributed solving algorithm for the Lasso. We
will set 4 objectives for our technique:

1. Reasonable complexity : We want to limit the computation time, thus we aim a
total work comparable to sequential methods and a logarithmic depth. We also want
the communication cost to stay close to those required by other existing methods,
such as Stochastic Gradient Descent for the n � p case (small dimension × number
of machines × number of iterations).
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2. Guarantee sparsity : The sparsity in the coefficients is one of the major interests
of the Lasso. For very big models (p � n or p ∼ n), we can easily assume that the
number of relevant predictors should remain small. Regarding the complexity of the
algorithm, sparsity has also two advantages:

• having many zero values largely decrease the storage necessary

• in a distributed framework, we will need to communicate the coefficient esti-
mate between different machines, therefore its sparsity will help controlling the
communication required by the algorithm.

To guarantee sparsity, it would then be interesting to focus on exact solving methods.

3. Whole coefficient path : As explained before, an interesting feature of the Lasso
method is its piece-wise linear coefficient path. Various sequential solving methods can
output the whole path for a similar computational cost (LARS, Coordinate Descent).
This path can be used to grasp a better understanding of the model studied and to
get the optimal penalization coefficient (λ) by cross validation without computation
overhead.

4. All types of matrices : An important advantage of the Lasso is its ability to deal
with problems where p ∼ n or p � n. Indeed, the solution is unique thanks to the
regularization, and the solution’s sparsity guarantees interpretability. The last case,
n� p, is very common in machine learning problem, especially in medicine or biology.
Thus, we find it really valuable to design algorithms which can deal with the three
types of data matrices outlined previously.

We will show in the next parts that the existing methods do not satisfy those 4 objectives.
This justify the development of a new distributed method based on Least Angle Regression.

2.2 Existing methods

In the distributed framework, only two methods are really implemented to solve the Lasso:

2.2.1 Using SGD (Spark)

On Spark, like various other regression and classification methods, the Lasso is solved using
stochastic gradient descent. To avoid shuffling the data, which would imply a large commu-
nication cost (O(np)), distributed sampling is used on the observations at each iteration. A
subgradient is used to deal with non differentiability of the L1 norm in 0.

This method does not satisfy 2 of our 4 objectives. By computing approximate solutions,
we lose the sparsity in the coefficients [7]. Like the sequential version, it does not compute the
full coefficient path, and although warm starts could be used, we would need to solve a large
number of optimization problems to get it which would involve unreasonable complexities.
Moreover, this method is only really adapted to the n � p case. It is implemented for
matrices distributed by rows and the big advantage of SGD is that it can stop before seeing
all the observations.

Because it fails at most of our objectives, we decide to discard this method for this
project and to explore distributed version of other solving methods.
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2.2.2 Shotgun (Distributed Coordinate Descent)

The Shotgun method developed by Bradley et al [1] is a distributed version of the shooting
method (Coordinate Descent). The general idea is to update the coefficients as in the sequen-
tial coordinate descent, but in parallel. The resulting method works well with uncorrelated
features but updates can conflict when correlations are too large.

It has been proved that the number of machines on which it can be parallelized without
diverging depends on the biggest eigenvalue of XTX: ρ (at most p

ρ +1). This is problematic

since this quantity would be too costly to compute in general (note that XTX do not fit
in memory when p � n). In addition, when ρ is too large, we would only be able too
parallelize the algorithm by making several machines work on the same update. But this
would yield important communication cost and suboptimal algorithm. Other techniques to
avoid divergence would be to lock when performing an important update but that would go
against our distributed framework.

The need to solve the optimization problem for a large set of values of λ would also
involve unreasonable communication cost. Another disadvantage of this method is that it is
only adapted to matrices stored by columns. When n� p and if it is stored by rows, once
again, there will be communication issues.

Finally, Zeng et al. compared the performances of the Shotgun algorithm on different
machine learning platforms [9]. They report poor results on Spark compared to the other
frameworks, which let us think this method is not well suited for Spark (which is our
targeted framework). In addition, they claim this was due to an excess of communication
(even though they study this algorithm on Short and Fat matrices p� n).

It is clear that this algorithms does not satisfy our objectives. Moreover, its convergence
to the solution depends a lot on the data, which is not something desirable.

2.3 What about Least Angle Regression ?

In section 1.2 we presented the three most famous methods to solve the Lasso sequentially.
Attempts were made to design a distributed version of the first two, but as described above
we found they had several drawbacks. Thus, it seems reasonable to look at the third option:
Leas Angle Regression. By essence, it guarantees the sparsity and computes the whole path.
We also know that the computation of the path does not add any overhead in the sequential
framework.

Another main advantage is that it is based on the covariance matrix of the active vari-
ables, whose size cannot exceed the smallest dimension (min(n, p)). It is therefore well
adapted to cases where n � p and n � p. The number of iterations of the algorithm is
also quite small in those cases (min(n, p)). Most of the operations appear embarrassingly
parallel (finding the next feature to enter the model, normalizing the data, updating the
coefficients) or easily doable on the driver (solving linear system). We will see that we can
also deal with almost square matrices with either an incomplete path, by approximation, or
by increasing the communication cost.

In the next part, we will study the full sequential algorithm and we will then study
separately the distributed algorithm for each one of the three types of matrices.
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3 Sequential LARS algorithm

3.1 General idea

The LARS method was introduced in 1.2.3. In practice, the two main parts of the algorithm
are the computations, at each iteration, of:

• the new coefficient direction δk that keeps tied all the correlations of active variables
with the residual. This parts solves a linear system of size k (the iteration number)

• the step αk+1 ∈ [0, 1] to go on the computed direction at this iteration in order to
update the active coefficients, βk+1 ← βk + αk+1δk

3.2 Algorithm

Algorithm 1 Sequential Least Angle Regression Algorithm

1: procedure LARS(X, y) . X n x m matrix, y vector of size n
2: Normalize(X)
3:

4: r1 ← y − ȳ
5: A1 ←

{
argmaxj(|XT

j r1|)
}

6: β1 ← 0
7:

8: for k = 1 to m-1 do
9: δk ← (XT

Ak
XAk

)−1XT
Ak
rk

10:

11: Let jA ∈ Ak
12: for j ∈ Āk do

13: α−j ←
|XT

jA
rk|−XT

j rk

|XT
jA
rk|−XT

j XAk
δk

14: αj ←
|XT

jA
rk|+XT

j rk

|XT
jA
rk|+XT

j XAk
δk

15: if min(α+
j , α

−
j ) < 0 then

16: αj ← max(α+
j , α

−
j )

17: else
18: αj ← min(α+

j , α
−
j )

19: end if
20: end for
21: jk+1 ← argminj∈Āk

αj
22:

23: Ak+1 ← Ak ∪ {jk+1}
24: rk+1 ← rk − αjk+1

XAk
δk

25: βk+1 ← βk + αjk+1
δk

26: end for
27: return coefs
28: end procedure
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3.3 Proof

We prove in this section why the algorithm above does compute the LARS solution.
Using

rk(α) = rk − αXAk
δk

we get:
XAk

rk(α) = XT
Ak
rk − αXT

Ak
XAk

δk = (1− α)XT
Ak
rk

which shows that δk is indeed the direction for which all the active variables keep identical
correlation with the residual.
Also ∀jA ∈ Ak, the correlation is:

Corr(jA, rk(α)) = (1− α)XT
jArk

and for any other predictor j :

Corr(j, rk(α)) = XT
j rk − αXT

j XAk
δk

For each predictor j ∈ Āk, we are looking for the value of αj such that:

|Corr(j, rk(α))| = |Corr(jA, rk(α))|

If Corr(j, rk(α)) > 0, which is equivalent to XT
j rk > αXT

j XAk
δk, then

α−j =
|XT

jA
rk| −XT

j rk

|XT
jA
rk| −XT

j XAk
δk

Otherwise:

α+
j =

|XT
jA
rk|+XT

j rk

|XT
jA
rk|+XT

j XAk
δk

We can then simplify this expression by taking

αj =

{
min(α+

j , α
−
j ) if min(α+

j , α
−
j ) ≥ 0

max(α+
j , α

−
j ) if min(α+

j , α
−
j ) < 0

3.4 Matrix inversion and Cholesky decomposition

As outlined in the algorithm above, at each step we need to compute the new coefficient
direction δk ← (XT

Ak
XAk

)−1XT
Ak
rk. This means that we need to solve the linear system

Ckx = XT
Ak
rk where Ck is the covariance matrix between active variables (of size k × k).

A classic method to solve such an equation is to compute the LU decomposition of Ck
(in time O(k3)), to then solve two triangular systems (in time O(k2)).

For the LARS algorithm, we can actually do a lot better. First notice that Ck is sym-
metric so we actually compute the Cholesky factor Gk such that Ck = GkG

T
k . Also, at each

step Ck is extended by one last column/row, so the first k × k block of Gk+1 is actually
Gk. Hence we only need to compute the last new row of Gk+1 at step k + 1, which is done
in k2 only (compared to k3 to compute the whole factor). A few more details on the exact
computation of the Cholesky factor are given in section 6.2.1.

Therefore, from the first to the last iteration, we store the current Cholesky decomposi-
tion of the covariance matrix XT

Ak
XAk

. It is updated at each step in O(k2) time, and used
to solve the linear system, also in in O(k2) time, giving δk.

This remark decreases the total computations needed for δ1, . . . , δI by a factor I: from
O(I4) to O(I3) (I being the total number of iterations, so typically I = min(n, p)).
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3.5 Lasso path from LARS?

Figure 3: Left panel shows the LARS coefficient profiles on the simulated data, as a function
of the L1 arc length. The right panel shows the Lasso profile. They are identical until the
dark-blue coefficient crosses zero at an arc length of about 18 (Figure 3.15 in [5]).

Figure 3 shows a comparison of the coefficient paths found by LARS and the Lasso on the
same data. We observe that the profiles are identical until one coefficient crosses zero. This
is a general result which leads to a simple modification of the LARS algorithm to compute
the Lasso path:

If a non-zero coefficient hits zero, drop its variable from the active set of variables
and recompute the current joint least squares direction.

In other words, if the value found for αk is such that the coefficient of an active variable
changes sign, we instead choose αk such that this coefficient is 0, and then continue the
algorithm removing this variable from the active set. In practice, this would be implemented
by finding an αk for each value of the active set at which its coefficient becomes zero 1.

Therefore the LAR(lasso) procedure can have more than min(n, p) steps but will still be
close to this number, since such an event does not happen often in practice. So this method
can compute the whole Lasso coefficient path in the same order of computation as that of
an ordinary least squares fit.

4 D-LARS for ’Short and Fat’ matrices (n� p)

4.1 Set up

For short and fat matrices, we assume that n � p, that n2 fits in memory but p doesn’t.
Therefore, we must store the data by columns with each of the B machines containing m

1If the absolute value of the coefficient is increasing, we just assign a value greater than 1
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columns – We assume mn fits in memory (m×B = p). We want our algorithm to

• Scale on p, the large dimension

• Avoid All-to-All communications

• Not broadcast more than a constant number of vector of size n at each iteration to
every machine

Because n2 fits in memory and I ≤ n, we will store the covariance matrix on the driver.
To be able to easily solve the linear system giving the direction δk ← (XT

Ak
XAk

)−1XT
Ak
rk,

we store the Cholesky decomposition of the covariance matrix on the driver, and update
it at each iteration. We will also store the current correlation with the residual and the
coefficients of previous iterations on the driver. Each machine will only store its m columns.

4.2 Algorithm

When the data is distributed by columns, we use the following algorithm:

Algorithm 2 Short and Fat - Distributed Least Angle Regression

1: procedure D-LARS(X, y) . X n x p matrix, y vector of size n
2:

3: Normalize(X) in parallel . Map
4:

5: r1 ← y − ȳ
6: Broadcast r1 to every machine
7: for j in 1 to p do
8: s̃j ← 2 ∗ 1XT

j r1>0 − 1

9: Emit (j, |XT
j r1|, s̃j) . Map

10: end for
11: j1, cor1, s1 ← max(j, |XT

j r1|, s̃j) . Reduce
12:

13: Init(j1, Xj1)
14:

15: for k = 1 to n-1 do
16:

17: Broadcast rk to every machine
18: δk ← ComputeDelta(cork, XAk

, s)
19: jk+1, αk+1, sjk+1

← minj∈Āk
EmitAlpha(δk, cork, Āk) . Reduce

20:

21: Ak+1 ← Ak ∪ {jk+1}
22: cork+1 ← (1− αk+1)cork
23: UpdateEstimates(jk+1, αk+1, XAk

, Xk+1)
24:

25: end for
26: return β
27: end procedure

The pseudo-code for Init, ComputeDelta, EmitAlpha and UpdateEstimates is
provided below. Note that since n � p, the Cholesky factor as well as the n × n matrix
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containing the coefficients of the path are stored on the driver. The computations of δk and
Akδk are also done on the driver.

Algorithm 3 Short and Fat Init

1: procedure Init(j1, Xj1)
2: A1 ← {j1}
3: G1 ←

(
XT
j1
Xj1

)
4: β ← SparseMatrix of zeros (n× n)
5: end procedure

Algorithm 4 Short and Fat ComputeDelta

1: procedure ComputeDelta(cork, XAk
, sAk

)
2: . Locally
3: Compute the new column of the covariance matrix XT

Ak
XAk

from dot product of new
active variable with previously selected ones

4: Extend the Cholesky factor Gk with new row, so that GkG
T
k = XT

Ak
XAk

5:

6: ck ← cork ∗ sAk
. XT

Ak
rk

7: δk ← solve(GkG
T
k x = ck) . Locally

8: return δk
9: end procedure

Algorithm 5 Short and Fat EmitAlpha

1: procedure EmitAlpha(δk, cork, Āk, XAk
)

2: Compute and Broadcast X̃k ← XAk
δk . Map + n Reduce

3:

4: for j ∈ Āk do

5: α−j ←
(
cork −XT

j rk
) (
cork −XT

j X̃k

)−1

6: α+
j ←

(
cork +XT

j rk
) (
cork +XT

j X̃k

)−1

7: if min(α+
j , α

−
j ) < 0 then

8: αj ← max(α+
j , α

−
j )

9: else
10: αj ← min(α+

j , α
−
j )

11: end if
12: if αj = α+

j then
13: s̃j ← +1
14: else
15: s̃j ← −1
16: end if
17: Emit (j, αj , s̃j) . Map
18: end for
19: end procedure
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Algorithm 6 Short and Fat UpdateEstimates

1: procedure UpdateEstimates(jk+1, αk+1, XAk
, Xjk+1

)
2: // Update Cholesky factor
3: Broadcast Xjk+1

to Ak
4: for j ∈ Ak do
5: Emit (j,XT

j Xjk+1
) . Map

6: end for

7: Cov:,k+1 ←
(

XT
Ak
Xjk+1

1

)
new column of the covariance matrix

8: Gk+1 ← Update Cholesky factor Gk . Locally
9:

10: // Update residual
11: rk+1 ← rk − αk+1 X̃k . Locally
12:

13: // Update coefficients
14: for j ∈ Ak do
15: βk+1,j ← βk,j + αk+1 δk,j . Locally
16: end for
17: end procedure

4.3 Spark Implementation

We implemented the algorithm outlined above in Scala / Spark on Databricks. A note-
book with full code and examples can be found at http://bit.do/dlars_databricks. In
addition, an extract of the core of the code is given in Appendix.

For simplicity, and due to the short time frame of this project, we did not use the
Cholesky factor but rather stored the covariance matrix. The linear system is solved at
each step with breeze.linalg. However we still implemented the smart update of the
covariance matrix, so this does not impact the communication, but only the computation
time on the driver.

We tested our code on two data sets:

• The lpsa.data set provided in Spark MLlib 2

• A crime data set 3 from the UCI Machine Learning Repositery [6].

In both cases we compared our results with the LARS implementation in R, and found
identical coefficient paths.

These data sets both have a rather small number of features and observations, and are
only intended to highlight the correctness of the implementation. Indeed, our Databricks
account was not well fitted to handle very large amount of data. This is also why we do not
report execution times or experimentally compare it with other implementations such has
LassoWithSGD implemented in Spark.

2data can be found at https://github.com/apache/spark/blob/master/data/mllib/ridge-data/lpsa.

data
3information can be found at http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime+

Unnormalized
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4.4 Complexity

Let’s suppose we only have B machines, each one containing m columns (m×B = p). The
complexity analysis is then:

• Normalizing in parallel and computing y − ȳ takes T = O(mn).

• Broadcasting r1 to every machine takes communication C = O(nB) and T = O(n log(B)).

• Finding the maximum correlation takes T = O(log(B) + mn) time and C = O(B)
communication. We first compute the correlation in each machine (O(mn)), combine
within each machine by taking the max (O(m)) and send those values (T = O(log(B))
and C = O(B))

• The Init takes T = O(1) time.

• For the kth loop:

– the broadcast takes C = O(nB) communication and T = O(n log(B)) time

– ComputeDelta is done locally and takes time T = O(k2) since the linear system
is solved using the Cholesky decomposition of the covariance matrix (as detailed
in section 3.4).

– EmitAlpha takes T = O(kn) to compute X̃k, T = O(n log(B)) to broadcast
it, T = O(mn) to compute XT

j rk and XT
j X̃k, T = O(m) to take the minimum

within each machine, and T = O(log(B)) to emit each αj . This gives a total
time of T = O(kn + n log(B) + mn). The communication is C = O(nB) due to
the first broadcast.

– Taking the minimum of the αj sent by each machine, by doing a reduce, takes
T = O(log(B)) and C = O(B).

– Updating Ak, rk and cork takes T = O(1) because XAk
δk is already computed.

– UpdateCholesky takes communication C = O(min(k,B)) and time T = O(min(k,B)+
k2 + min(k,m)n) = O(k2 + min(k,m)n) to compute the correlations on each ma-
chine (min(k,m)n), send them to the driver (min(k,B)) and update the Cholesky
decomposition (see section 3.4).

This gives asymptotically (O are omitted):

T = mn+ n log(B) +

I∑
k=1

(
n log(B) + k2 + nk +mn

)
= mnI + n log(B)I + I3 + nI2

{
T = O(mnI + n log(B)I + I3 + nI2)

C = O
(
nB +

∑I
k=1 nB

)
= O(nBI)
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4.5 Discussion

Let’s first look at the complexity in different cases:

• In the case where we want the full path, we have I = n and then:{
T = O(mn2 + n2 log(B) + n3) = O

(
pn2

B + n2 log(B) + n3
)

C = O(n2B)

• With B = p (a machine for each column) we get:{
T = O(n log(p)I + I3 + nI2)

C = O(npI)

• With B = p and I = n: {
T = O

(
n2 log(p) + n3

)
C = O(n2p)

We can see that the communication cost is the product of the number of iterations, the
number of machines and the small dimension. It is therefore comparable to SGD which
requires, at each iteration, the number of machine times the small dimension communica-
tions. The difference is that we have at most n iterations (the smallest dimension) to get an
accurate solution, whereas SGD requires approximately 1/ε iterations (for a tolerance ε).

The computation time is composed of three main parts. The first is the update of the
solution of the linear system on the driver (this step has the exact same complexity than
the one for the sequential algorithm and does not depend on B). The second is a term
of communication between machines due to the broadcast of the residual (when B is 1 it
disappears). The last one comes from the computation of the correlation between features,
and is inversely proportional to the number of machines. In the case where B is p, computing
the correlations is not a problem anymore.

Finally we can analyze the complexity of this algorithm in a PRAM model, where the
communication cost is absent. The depth would be the computation time with B = p proces-
sors, so it has logarithmic depth since p is the dimension that matters (p� n). In addition,
there is asymptotically the same amount of work as in the sequential implementation.

5 D-LARS for ’Tall and Skinny’ matrices (p� n)

5.1 Set up

For tall and skinny matrices, symmetrically with short and fat, we assume that p� n, that
p2 fits in memory but n doesn’t. Therefore, we must store the data by rows with each of
the B machines containing m rows – We assume mp fits in memory (m × B = n). Once
again, we want our algorithm to

• Scale on n, the large dimension

• Avoid All-to-All communications
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• Not broadcast more than a constant number of vector of size n at each iteration to
every machine

Because p2 fits in memory and I ≤ p, we will also store the covariance matrix on the driver.
To be able to easily solve the linear system giving the direction δk ← (XT

Ak
XAk

)−1XT
Ak
rk,

we store the Cholesky decomposition of the covariance matrix on the driver and update
it at each iteration. We will also store the current correlation with the residual and the
coefficients of previous iterations on the driver. Each machine will only store its m rows.

The main difference is that in this new framework, computing one correlation already re-
quires communication between machines. Therefore, we will prefer doing all the correlations
at the same time to take more advantage of the distributed framework.

5.2 Algorithm

Algorithm 7 Tall and Skinny - Distributed Least Angle Regression

1: procedure D-LARS(X, y) . X n x p matrix, y vector of size n
2:

3: Normalize(X) . Map+AllReduce
4:

5: Compute and broadcast ȳ . Map + Reduce
6: for i in 1 to n do . Map

7: r
(i)
1 ← y(i) − ȳ

8: Emit (X(i)T r
(i)
1 )

9: end for
10: XT r1 ←

∑
iX

(i)T r
(i)
1 . p Reduce

11: j1, cor1, s1 ← max(j, |XT
j r1|, 2 ∗ 1XT

j r1>0 − 1) . Locally
12:

13: Init(j1, Xj1)
14:

15: for k = 1 to n-1 do
16:

17: δk ← ComputeDelta(cork, XAk
, s) . Locally

18: Broadcast δk
19: Compute X(i)T r

(i)
k and X(i)TX

(i)
Ak
δk on every machine . Map

20: Sum partial computations to get XT rk and XTXAk
δk . p Reduce

21: jk+1, αk+1, sjk+1
← ComputeAlpha(cork, X

T rk, X
TXAk

δk)
22: Broadcast αjk+1

23:

24: Ak+1 ← Ak ∪ {jk+1}
25: cork+1 ← (1− αk+1)cork
26: UpdateEstimates(jk+1, αk+1, XAk

, Xk+1)
27:

28: end for
29: return β
30: end procedure
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Init and ComputeDelta are implemented as for Short and Fat matrices. ComputeAlpha
is done locally on the driver with the algorithm below. UpdateEstimates is also slightly
different and described below.

Algorithm 8 Tall and Skinny ComputeAlpha

1: procedure ComputeAlpha(cork, X
T rk, X

TXAk
δk)

2: Let X̃ ← (XTXAk
)δk

3: for j ∈ Āk do

4: α−j ←
(
cork − (XT rk)j

) (
cork − X̃j

)−1

5: α+
j ←

(
cork + (XT rk)j

) (
cork + X̃j

)−1

6: if min(α+
j , α

−
j ) < 0 then

7: αj ← max(α+
j , α

−
j )

8: else
9: αj ← min(α+

j , α
−
j )

10: end if
11: if αj = α+

j then
12: s̃j ← +1
13: else
14: s̃j ← −1
15: end if
16: end for

return minj(j, αj , s̃j)
17: end procedure

Algorithm 9 Tall and Skinny UpdateEstimates

1: procedure UpdateEstimates(jk+1, αk+1, XAk
, Xjk+1

)
2: // Update Cholesky factor
3: for i ∈ [1, n] do

4: Emit (X
(i)T
Ak

X
(i)
jk+1

) . Map
5: end for
6: Sum to compute the new column of the covariance matrix:
7: Cov1:k,k+1 ← XT

Ak
Xjk+1

. k Reduce
8: Gk+1 ← Update Cholesky factor Gk . Locally
9:

10: // Update residual

11: r
(i)
k+1 ← r

(i)
k − αk+1X

(i)
Ak
δk . Map

12:

13: // Update coefficients
14: for j ∈ Ak do
15: βk+1,j ← βk,j + αk+1 δk,j . Locally
16: end for
17: end procedure
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5.3 Complexity

Assuming we have B machine, each having m rows (mB = n).

• To normalize the data we have to compute the sum of squares for each column, sum
it across the machines and finally broadcast the normalization factors. So this takes
T = O(pm+ p log(B)) time and C = O(pB) communications. We can also compute ȳ
with the same method and so it does not change the asymptotic complexity.

• Broadcasting ȳ takes time T = O(log(B)) and communication C = O(B).

• Like inside the loop, computing all the correlations using p reduces takes T = O(mp+
p log(B))and C = O(pB).

• Init takes T = O(1)

• For the kth loop:

– ComputeDelta is done locally and takes time T = O(k2) since the linear system
is solved using the Cholesky decomposition of the covariance matrix (as detailed
in section 3.4).

– Broadcasting δk takes communication C = O(kB) and time T = O(k log(B)).

– We compute XT rk at each step through p dot products between vectors of size
m, before summing across the machines. So this takes T = O (p(m+ log(B))
time and C = O(pB) communications.

– The local computation of XTXAk
δk takes pm + mk time, and the result is a

vector of size p as above. So we can compute XTXAk
δk in T = O(pm+p log(B))

time (since k ≤ p) and C = O(pB) communications.

– We compute αk+1 locally in O(p) time. It is then broadcast, which takes com-
munication C = O(B) and time T = O(log(B)).

– UpdateCholesky needs to compute the k dot products XT
Ak
Xjk+1

which takes
time T = O (k(m+ log(B))) and C = O(kB) communications. The update of
the Cholesky decomposition takes T = O(k2).

For I iterations, he total complexity is therefore (O omitted){
T = Ip (m+ log(B)) + I3

C = IpB

5.4 Discussion

Let’s first look at the complexity in different cases:

• In the case where we want the full path, we have I = p and then:{
T = O

(
np2

B + p2 log(B) + p3
)

C = O(p2B)
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• With B = n (a machine for each row) we get:{
T = O(p log(n)I + I3)

C = O(npI)

• With B = p and I = n: {
T = O

(
p2 log(n) + p3

)
C = O(p2n)

We can see that we have the same kind of complexities we got for Short and Fat matri-
ces. All comments regarding Short and Fat then apply (Comparable communication cost
to SGD, trade off between communication and decreasing the computation time of the cor-
relations by changing B).

Even though we could have thought that distributed LARS would be more suitable to
data matrices stored by column (n � p), we actually get similar complexities when it is
stored by row (p� n). So those symmetric results suggest that the whole method can also
scale very well on n. This is even more surprising given that computations within machines
are done very differently.

This very strong result is largely due to the LARS method, that only rely on computing
the covariance matrix (correlations). The latter cannot exceed the smallest dimension which
guarantees both a small number of iterations and small matrices, as long as one dimension
is much smaller than the other.

6 D-LARS for ’Almost Square’ matrices (n ∼ p)

6.1 Set up

For almost square matrices, we assume that both n and p fit in memory but that their
square n2 and p2 do not. Therefore the data can be stored either by column or row, with
each of the B machines containing m columns/rows – We assume mn fits in memory.

In this scenario the difficulty is that after
√
n iterations, the covariance matrix of the

active variables do not fit in memory anymore. Therefore we cannot store the Cholesky
factor on the driver if we want more than

√
n non-zero coefficients.

Thus we split the analysis of the ’almost square’ case into two parts, depending on the
number of iterations targeted.

First
√
n iterations The sparsity of the Lasso solution is its main strength, and can

also be an objective by itself. Therefore when p is large, it can be a reasonable approach
to consider only the first

√
n steps of the coefficient path (i.e. all solutions with at most√

n non-zero coefficients). The last iterations will in most cases be useless as we won’t get
interpretations and the optimal λ is generally implying few nonzero coefficients when p is
large.

In that case, the covariance matrix / Cholesky factor fit in memory, hence we can store it
on the driver. So we can actually use the algorithms proposed for Short and Fat or Tall and
Skinny matrices, which interestingly gives flexibility in the way data is stored (by column
or row).
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6.2 Computing the whole path

6.2.1 Distributed Cholesky

In this section we describe how we can adapt the algorithm used previously after
√
n itera-

tions, i.e. when the Cholesky factor do not fit in memory anymore.

Updating the Cholesky decomposition When n ∼ p we cannot store the covariance
matrix on the driver, and it must stay distributed instead. Recall that we only need the
Cholesky decomposition of the covariance matrix, and can directly update it at each itera-
tion.

We store the Cholesky factor G (s.t. C = GGT ) by row (independently of the rest of
the data). At a new step, we get the new column Ck+1 and we need to compute the last
row of G: gk+1,j are computed one by one (and by increasing j) through the formula

Ck+1,j =
∑
i≤j

gk+1,igj,i

Notice that each step is done on a single (but different) machine. So this requires doing 2k
one-to-one communications to send Ck+1,j and the current estimate of gk+1.

Actually if we use combiners and partition the Cholesky factor so that rows with close
index are stored on the same machine, then the communication cost is only C = kB (instead
of the naive k2). As before this is done in time T = k2.

Solving the linear system We then need to solve GGTx = y, which is done by first
solving Gz = y and then GTx = z.

Notice that the first solve requires exactly the same amount of computations as updating
the last row of G described above. The second steps is more costly since we need to broadcast
xj to every machine as soon as its value is computed, which is then done by a reduce.
Therefore we solve the linear system in C = k2B communications and T = k(mG + log(B))
(where mG < k is the maximum number of rows of G stored on the same machine).

Thus the whole step Cholesky update + linear solve takes C = k2B communications
and T = k2 + k log(B) time.

Algorithm The algorithm is based on D-LARS for Short and Fat matrices (n � p), de-
scribed in 2. We modify ComputeDelta and the Cholesky update in UpdateEstimates
as described above. We also modify Init and EmitAlpha so that the correlations between
a given variable and the active ones are stored on its machine, thus reducing the communi-
cation cost. In addition, note that in this case β is also distributed. The pseudo-code for
these functions is given below.
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Algorithm 10 Square Init

1: procedure Init(j1, Xj1)
2: A1 ← {j1}
3:

4: Broadcast Xj1

5: for j in 1 to p do
6: ActiveCorj ← [XT

j Xj1 ] . Map

7: β(j) ← sparse vector of zeros
8: end for
9:

10: end procedure

Algorithm 11 Square EmitAlpha

1: procedure EmitAlpha(δk, cork, Āk, XAk
)

2: Broadcast δk to every machine
3:

4: for j ∈ Āk do
5: α−j ←

(
cork −XT

j rk
)

(cork − ActiveCorjδk)
−1

6: α+
j ←

(
cork +XT

j rk
)

(cork + ActiveCorjδk)
−1

7: if min(α+
j , α

−
j ) < 0 then

8: αj ← max(α+
j , α

−
j )

9: else
10: αj ← min(α+

j , α
−
j )

11: end if
12: if αj = α+

j then
13: s̃j ← +1
14: else
15: s̃j ← −1
16: end if
17: Emit (j, αj , s̃j) . Map
18: end for
19: end procedure
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Algorithm 12 Square UpdateEstimates

1: procedure UpdateEstimates(jk+1, αk+1, XAk
, Xjk+1

)
2: Broadcast αk+1

3:

4: // Update the distributed Cholesky factor
5: Gk+1 ← Update Cholesky factor Gk . Locally
6:

7: // Update residual
8: rk+1 ← rk − αk+1XAk

δk . Map+Reduce
9:

10: // Update coefficients
11: for j ∈ Ak do

12: β
(j)
k+1 ← β

(j)
k + αk+1 δk,j . Map

13: end for
14: end procedure

6.2.2 Solving the linear system by gradient descent

After
√
n iterations, we cannot store the covariance matrix on the driver and solving the

linear system, even with the use of distributed Cholesky decomposition, ends up with a lot
of communications.

To decrease the communication cost as well as the computation time, we propose the use
of approximate solutions for the system. This would be done after the first

√
n iterations,

and we suppose that after this point, using approximate coefficient directions would not
much the path. We can see our linear system as a quadratic optimization problem [8], by
noticing that solving the following system in δ:

XTXδ = XT r

is the same as finding the minimum of f :

f(δ) =
1

2
δTXTXδ − δTXT r + c

because its gradient is:
∇f(δ) = XTXδ −XT r

We can then use any optimization technique to solve this problem, which would provide
our next estimate of δk. By using Gradient Descent or SGD with the last estimate as a
warm start, we can get a good approximation of the solution without large communication
costs, and still guaranteeing sparsity in the coefficients (β).

By storing the jth row of XTX on the same machine as the jth column xj , we can
easily perform the updates. We need to broadcast the residual and δ to every machine
containing active variables, and send the computed δ back. The other steps involve cheap
computation time and communication cost. With standard gradient descent, each step
requires more computations but takes more advantage of the parallelization to compute the
update. Whereas SGD does not use parallelization but could converge with less than k
steps.
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6.2.3 Incremental Forward Stagewise approximation

Incremental Forward Stagewise Regression (FSε) [5] is another path-based linear regression
algorithm that provides results very similar to Lasso and LARS. Although it was inspired
by boosting procedures, the general idea is very similar to LARS, but with a progression
by small stages along the path. More precisely, it repeats the following steps, with ε > 0 a
small constant:

• Find the predictor Xj most correlated with the residual rk

• Update its coefficient βj ← βj + ε sjk, where sjk is the sign of the correlation between
Xj and the residual

• Update the residual rk+1 ← rk − ε sjkXj

Therefore this method is very similar to LARS but does not need to compute the coeffi-
cient directions (i.e. to solve a linear system). Hence we propose to pursue our algorithm,
after the first

√
n iterations, with this discretized version.

A naive implementation would broadcast Xj or the new residual rk+1 at each step, but
this could drastically increase the communication cost since we cannot bound the number
of iterations. However, we could use some heuristics to avoid that, or increase the stage size
ε. This would result in reducing the number of iterations (speed up), but we would only
get a discrete path. In addition, we could try other approximations inspired by stochastic
gradient descent. For example if the data was stored by row, we could perform many steps
on each machine, before merging the results.

Conclusion

We have shown that using specific methods to distribute a targeted problem can lead to
better parallelization of the algorithm. For the Lasso, using the piece-wise linear property of
its coefficient path, we have been able to outperform generic gradient based solving methods,
while satisfying useful objectives. Adapting Least Angle regression has resulted in various
advantages: it guarantees sparsity and computes the full coefficient path with almost no
overhead.

We have shown ways to parallelize it for different types of distributed matrices. When
one dimension is largely smaller than the other, it is very well adapted since the number
of iterations is at most that small dimension, and the covariance matrix can be stored on
the driver. For almost square matrices, the computation of the full path is more costly but
some approximations could speed up the algorithm. Further studies should focus on this
harder case.

This analysis gives new perspective to tackle other L1 penalized versions of machine
learning algorithms, such as logistic regression or nearest neighbors [5]. This approach
should also motivate the design of other path seekers that approximate famous machine
learning algorithms in distributed framework, including the partial least square for Ridge
regression or the Generalized Path Seeking (GPS) [4], which can approximate the Lasso
path for any convex loss criterion and is also used to solve Gradient Boosting. The latter
can solve more general problems with a wide range of penalization (elastic net, ridge), but,
like forward stagewise, it does not take advantage of the piece-wise linearity of the Lasso
path.
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Appendix: Code sample

The full Databricks notebook is available at http://bit.do/dlars_databricks.

// INIT

// Normalize data --------------------------------------------------------------

val data = data0.map{case(idx, col) =>

val m = col.sum / col.length

(idx, col.map{v => v - m})

}.map{case(idx, col) =>

val std = Math.sqrt(col.map{v => v*v}.sum)

(idx, col.map{v => v / std})

}.cache()

// Useful variables ------------------------------------------------------------

// nb of features

val p = data.count().toInt

// nb of observations

val N_obs = labels.length

// definition of ’zero’

val epsilon = 1e-10

// control prints

val verbose = true

// Init residuel --------------------------------------------------------------

val mean_labels = labels.sum / labels.length

var res = labels.map{v => v - mean_labels}

//var vec_res = Vectors.dense(res)

var coefs = List(Array.fill(p)(0.0))

// Find first variable to add, which maximizes correlation with res ------------

val max_corr = data.map{case(idx, v) =>

val corr = mydot(v, res)

(idx, Math.abs(corr), corr)

}.takeOrdered(1)(Ordering[Double].reverse.on(_._2))(0)

// idx of the next variable to add

var new_feat = max_corr._1

// current correlation btw active set and residuel

var cur_corr = max_corr._2

// indices of the variables in the active set

var active = TreeSet(new_feat)

// init variable for later, suppose to hold (idx, alpha)

var min_alpha = (0, 0.0, 0.0)

var corr_signs = Array.fill(p)(0.0)

corr_signs(new_feat) = bool2dbl(max_corr._3 > 0)

var indexer = Map((new_feat, 0))

// init covariance matrix, its diagonal has only ones

var cov_matrix = breeze.linalg.DenseMatrix.eye[Double](1)
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print("First variable: ")

println(new_feat)

// LOOP

var k = 0

while(k < Math.min(p, N_obs) && cur_corr > epsilon){

k += 1

System.out.println("Step " + k )

val unactive_cols = data.filter(line => !(active contains line._1))

val active_cols = data.filter(line => (active contains line._1))

// Compute new direction -------------------------------------------------------

val dir = (cov_matrix \ create_cor_vector(active, cur_corr, corr_signs,

indexer)).toArray

if(verbose) { System.out.println("dir :" + dir.mkString("<", ",", ">")) }

if(k < Math.min(p, N_obs)){ // need to compute alpha

// Compute directed feature --------------------------------------------------

// this is X_Ak . delta_k

val dir_feat = active_cols.map{

case(idx, v) => scal_mult(v, dir(indexer(idx)))

}.reduce{

// add vectors element by element

case(v1, v2) => v_add(v1, v2, 1.0)

}

// Compute alpha -------------------------------------------------------------

val all_alpha = unactive_cols.map{ case(i, v) =>

val res_cor = mydot(v, res)

val dir_cor = mydot(v, dir_feat)

val a1 = (cur_corr - res_cor)/(cur_corr - dir_cor)

val a2 = (cur_corr + res_cor)/(cur_corr + dir_cor)

if(a1 > 0 && a2 > 0){

(i, Math.min(a1, a2), bool2dbl(a1 < a2))

} else {

(i, Math.max(a1, a2), bool2dbl(a1 > a2))

}

}

min_alpha = all_alpha.filter{x => x._2 >

0}.takeOrdered(1)(Ordering[Double].on(_._2))(0)

System.out.println("Adding variable " + min_alpha._1)

// check if res is in Span(A_k), if so, alpha = 1

if(min_alpha._2 > 1) {

min_alpha = min_alpha.copy(_2 = 1)

}

// update residual
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res = v_add(res, dir_feat, - min_alpha._2)

}

else {

// this is the last iteration

min_alpha = (0, 1.0, 0.0) // min_alpha._1 does not exist for the last iteration

}

// update coefs values

val cur_coefs = Array.fill(p)(0.0)

for(i <- active){

// coefs(0) is the last value of the coef vector

cur_coefs(i) = coefs(0)(i) + min_alpha._2 * dir(indexer(i))

}

// save coefs

coefs = cur_coefs :: coefs

if(verbose){ System.out.println(cur_coefs.mkString("<", ",", ">")) }

if(verbose) { System.out.println("Alpha step: " + min_alpha._2 + "\n") }

if(k < Math.min(p, N_obs)) {

// update for next step

new_feat = min_alpha._1

cur_corr = (1 - min_alpha._2 ) * cur_corr

corr_signs(new_feat) = min_alpha._3

// Update covariance matrix ----------------------------------------------------

val new_feat_val = data.filter(_._1 == new_feat).collect()(0)

val new_entries = active_cols.map{

case(idx, v) => (indexer(idx), mydot(v, new_feat_val._2))

}.collect().sortWith(_._1 < _._1).map{case(i,v) => v}

val vec1 = new breeze.linalg.DenseMatrix(new_entries.length, 1, new_entries)

val vec2 = new breeze.linalg.DenseMatrix(1, new_entries.length+1, (new_entries

:+ 1.0))

cov_matrix = breeze.linalg.DenseMatrix.horzcat(cov_matrix, vec1)

cov_matrix = breeze.linalg.DenseMatrix.vertcat(cov_matrix, vec2)

active = active + new_feat

indexer += (new_feat -> k)

}

}

28


	Introduction
	Lasso Regression
	Definition, Penalization and Sparsity
	Sequential Solving Methods
	Gradient Methods
	Coordinate Descent
	Least Angle Regression


	Parallelization
	Objectives
	Existing methods
	Using SGD (Spark)
	Shotgun (Distributed Coordinate Descent)

	What about Least Angle Regression ?

	Sequential LARS algorithm
	General idea
	Algorithm
	Proof
	Matrix inversion and Cholesky decomposition
	Lasso path from LARS?

	D-LARS for 'Short and Fat' matrices (n p)
	Set up
	Algorithm
	Spark Implementation
	Complexity
	Discussion

	D-LARS for 'Tall and Skinny' matrices (p n)
	Set up
	Algorithm
	Complexity
	Discussion

	D-LARS for 'Almost Square' matrices (n p)
	Set up
	Computing the whole path
	Distributed Cholesky
	Solving the linear system by gradient descent
	Incremental Forward Stagewise approximation


	Conclusion
	Appendix: Code sample

