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ABSTRACT

In this project, we discuss ”Collaborative Filtering” as the most prominent ap-
proach for Recommender Systems. We analyze various ”Matrix Factorization” meth-
ods in the context of ”Distributed Computing”. Then, we provide our own im-
plementation of the Distributed Stochastic Gradient Descent matrix factorization
method ”DSGD” in Spark. DSGD was initially suggested by Rainer Gemulla, Peter
J. Haas, Erik Nijkamp and Yannis Sismanis in their paper titled ”Large-Scale Matrix
Factorization with Distributed Stochastic Gradient Descent”.

Using the ”Netflix Problem dataset”, we analyze the performance of DSGD in
a Distributed Computing setting, compare it to the Alternating Least Squares Matrix
Factorization Method, which is already implemented in Spark, and make recommen-
dations.
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Chapter 1

Introduction

1.1 Recommender Systems

Recommender systems are widely used on the Web for recommending products and
services to users. Recommendations are context dependent (e.g. device, location,
time) and can happen through different interfaces (e.g. mobile browser, tablet, view-
port).

These systems serve two important functions:

1. They help users deal with the information overload by giving them recommen-
dations of products, etc.

2. They help businesses make more profits, i.e., selling more products.

Some examples of Recommender Systems in our everyday life are:

• Movie recommendation (Netflix)

• Related product recommendation (Amazon)

• Web page ranking (Google)

• Social recommendation (Facebook)

• News content recommendation (Yahoo)

• Priority inbox spam filtering (Google)

• Online dating (OK Cupid) Computational Advertising (Yahoo)

While being common and studied for a long time, Recommender Systems still
face major challenges:

1. Scalability
¯

: In a typical Recommender System problem, there might be mil-
lions of objects and hundreds of millions of users. Hence, any algorithm per-
forming the recommendation should be able to work on such huge datasets.
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2. Cold Start
¯

: Recommender Systems posses a cold start issue. Both the users
and the objects keep on changing so for any new user we wouldn’t have any
information about his preference for objects in the past and for any new object
we wouldn’t have any information about its appeal to users.

3. Imbalanced Dataset
¯

: The user activity/ item reviews are power law distributed.
This means that we have most movies with very small number of reviews and
very few movies with a huge number of reviews associated with them. From a
user perspective, the number items reviewed is a small percentage of all items.

1.2 Collaborative Filtering

As it stands today, Collaborative Filtering is the most prominent approach to
generate recommendations. It’s used by large, commercial e-commerce sites
and applicable in many domains (movies, books, DVDs,...).

The idea behind Collaborative Filtering is using the ”Wisdom of Crowd” to
recommend items. User input can be either implicit (either buy an object or
not) or explicit (give a score to an object).

We define different Collaborative Filtering algorithms:

• Baseline Collaborative Filtering
¯

: Uses mean of all available ratings u, a
bias for each item bi (how better/worse is a specific item rated relative to
other items) and a bias for each user bu (how better/worse are the ratings of
a specific user relative to other users). Then, the rating of item i by a spe-
cific user u would be: ru,i = u+bi +bu (a convex least squares problem).

• Memory-Based Collaborative Filtering
¯

: Recommends items to a specific
user based the proximity of all items to the items the user liked in the past.
Cosine similarity is one proximity measure that could be used.

• Matrix Factorization Collaborative Filtering
¯

: Views the combinations of
items and users as a matrix and tries to decompose it into two smaller
matrices. We will discuss Matrix Factorization in details in the following
chapter.
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Chapter 2

Matrix Factorization: Popular Models

Matrix factorization is a latent factor model. It assumes that there are some la-
tent factors (can also be called: features, aspects) aspects Latent variables (also
called features, aspects, or factors) that determine how a specific user rates a
specific item. Thus, the problem shrinks down to finding those features, which
would allow us to predict a rating with respect to a particular user/item combi-
nation. In trying to find the different features, we assume that they are less than
both the number of users and the number of items since it would unreasonable
to assume that each user is associated with a unique feature. This dimension
reduction is one of the main advantages of Matrix Factorization compared to
other Collaborative Filtering Techniques.

Additionally, Matrix factorization has had superior performance both in terms
of recommendation quality and scalability. Scalability became a crucial mea-
sure as we entered the Big Data Era. A popular benchmark for testing new
recommender systems is ”The Netflix Problem” and a Matrix Factorization
method, namely Singular Value Decomposition (SVD), has won the Netflix
Prize Contest.

2.1 Principal Component Analysis

Principal Component Analysis (PCA) is a powerful technique of dimension-
ality reduction and is a particular realization of the Matrix Factorization (MF)
approach. PCA projects a dataset to a new coordinate system by determining
the eigenvectors and eigenvalues of a matrix. It involves a calculation of a
covariance matrix of a dataset to minimize the redundancy and maximize the
variance. The covariance matrix is used to measure how much the dimensions
vary from the mean with respect to each other. The covariance of two random
variables (dimensions) is their tendency to vary together as:

cov(X , Y ) = E[E[X ]−X ] ·E[E[Y ]−Y ]
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where E[X ] and E[Y ] denote the expected value of X and Y respectively. For a
sampled dataset, this can be explicitly written out.

cov(X , Y ) =
N

∑
i=1

(xi− x)(yi− y)
N

with x = mean(X) and y = mean(Y ) , where N is the dimension of the dataset.
The covariance matrix is a matrix A with elements Ai, j = cov(i, j) . It centers
the data by subtracting the mean of each sample vector.

Once the unit eigenvectors and the eigenvalues are calculated, the eigenvalues
are sorted in descending order. This gives us the components in order of sig-
nificance. The eigenvector with the highest eigenvalue is the most dominant
principle component of the dataset (PC1) . It expresses the most significant
relationship between the data dimensions. Therefore, principal components are
calculated by multiplying each row of the eigenvectors with the sorted eigen-
values.

The main limitation of PCA is it’s inability to handle missing values (i.e. it
would assume that the rating is 0 if the user hasn’t rated an item. A modified
version of PCA is Binary PCA, which finds components from data assuming
Bernoulli distributions for the observations. Such probabilistic approach allows
for straightforward treatment of missing values. This would allow us to deal
better with the sparsity of Recommender Systems matrices.

2.2 Singular Value Decomposition

SVD is a well-known matrix factorization technique that factors an m×n ma-
trix R into three matrices as the following:

R =U ·S ·V ′

Where, U and V are two orthogonal matrices of size m× r and n× r respec-
tively; r is the rank of the matrix R. S is a diagonal matrix of size r× r having
all singular values of matrix R as its diagonal entries. All the entries of matrix S
are positive and stored in decreasing order of their magnitude. The matrices ob-
tained by performing SVD are particularly useful for our application because
of the property that SVD provides the best lower rank approximations of the
original matrix R, in terms of Frobenius norm. It is possible to reduce the r× r
matrix S to have only k largest diagonal values to obtain a matrix Sk,k < r. If
the matrices U and V are reduced accordingly, then the reconstructed matrix
Rk = Uk.Sk.V ′k is the closest rank-k matrix to R. In other words, Rk minimizes
the Frobenius norm ‖R- R‖ over all rank-k matrices.

SVD is used in recommender systems to perform two different tasks:
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• To capture latent relationships between users and items that allow us to
compute the predicted likeliness of a certain item by a user

• To produce a low-dimensional representation of the original user-item space
and then compute neighborhood in the reduced space

Using the low-dimensional representation, a list of top-N item recommenda-
tions for users is generated.

Below is a description of the steps involved:

(a) Start with a user-item ratings matrix that is very sparse, we call this matrix
R

(b) Remove Sparsity by assigning the average rating of an item to all missing
ratings for that item

(c) Normalize ratings per user (i.e. subtract of user average from each rating
so that the average rating of each user is 0)

(d) Get a normalized matrix Rnorm. Essentially, Rnorm = R+NPR, where NPR
is the fill-in matrix that provides naive non-personalized recommendation

(e) Factor the matrix Rnorm and obtain a low-rank approximation

(f) Use resultant matrices to compute the recommendation score for any user
c and item p

The dimension of UkS1/2
k is m× k and the dimension of S1/2

k V ′k is k× n. To
compute the prediction we simply calculate the dot-product of the cth row of
UkS1/2

k and the pth column of S1/2
k V ′k and add the user average back using the

following:

CPpred =C+UK.
√

Sk
′
(c) ·
√

Sk.Vk′(P) .

Note that even though the Rnorm matrix is dense, the special structure of the ma-
trix NPR allows us to use sparse SVD algorithms whose complexity is almost
linear to the number of non-zeros in the original matrix R. The optimal choice
of the value k is critical to high-quality prediction generation. We are interested
in a value of k that is large enough to capture all the important structures in the
matrix yet small enough to avoid over-fitting errors. Usually, a good value of k
is found by trying several different values.

SVD is able to handle large dataset, sparseness of rating matrix and scalability
problem of CF algorithm efficiently. The prize winning method of the Netflix
Prize Contest employed an adapted version of SVD
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2.3 Alternating Least Squares

When it comes to using matrix factorization in Recommender Systems, our
goal is to finding an m× r matrix W and an r×n matrix H such that V ≈WH
for a given m× n input matrix V , in the sense of minimizing a specified loss
function L(V, WH) computed over N training points.

Alternating Least Squares. In its standard form, the method of alternating least
squares optimizes

LSL = ∑
i, j
(Vi j− [WH]i j)

2

The method alternates between finding the best value for W given H, and find-
ing the best value of H given W . This amounts to computing the least squares
solutions to the following systems of linear equations

Vi∗−Wi∗Hn = 0,

V∗ j−Wn+1H∗ j = 0,

where the unknown variable is underlined. This specific form suggests that
each row of W can be updated by accessing only the corresponding row in
the data matrix V , while each column in H can be updated by accessing the
corresponding column in V . This facilitates distributed processing; see below.
The equations can be solved using a method of choice. We obtain

W T
n+1← (HnHT

n )
−1HnV T,

Hn+1← (W T
n+1Wn+1)

−1W TV.

for the unregularized loss shown above. When an additional L2 regularization
term of form λ(‖W‖2

F +‖H‖2
F) is added, we obtain

W T
n+1 ← (HnHT

n +λI)−1HnV T

Hn+1 ← (W T
n+1Wn+1 +λI)−1W TV

Since the update term of Hn+1 depends on Wn+1, the input matrix has to be
processed twice to update both factor matrices.

In contrast to SVD, ALS does not produce an orthogonal factorization and it
might get stuck in local minima. However, ALS can handle a wide range of
variations for which SVD is not applicable, but which are important in practice.
Examples include non-negativity constraints, sparsity constraints, weights and
regularization. In general, ALS is applicable when the loss function is quadratic
in both W and H.
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In Spark MLlib, a distributed version of ALS is implemented for Recommender
Systems. It breaks the matrices W and H into blocks and reduces communica-
tion by only sending one copy of each user vector to each item block on each
iteration, and only for the item blocks that need that user’s feature vector.

This is achieved by precomputing some information about the ratings matrix to
determine the ”out-links” of each user (which blocks of items it will contribute
to) and ”in-link” information for each item (which of the feature vectors it
receives from each user block it will depend on). This allows us to send only an
array of feature vectors between each user block and item block, and have the
item block find the users’ ratings and update the items based on these messages.

2.4 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD), is an iterative optimization algorithm which
has been shown, in a sequential setting, to be very effective for matrix factor-
ization.

The goal of SGD is to find the value θ∗ ∈ ℜk(k ≥ 1) that minimizes a given
loss L(θ) . The algorithm makes use of noisy observations L̂′(θ) of L′(θ) , the
function’s gradient with respect to θ. Starting with some initial value θ0, SGD
refines the parameter value by iterating the stochastic difference equation

θn+1 = θn−∈nL̂′(θn)

where n denotes the step number and {∈n} is a sequence of decreasing step
sizes. Since −L′(θn) is the direction of steepest descent, (2) constitutes a noisy
version of gradient descent.

Stochastic approximation theory can be used to show that, under certain regu-
larity conditions, the noise in the gradient estimates ”averages out” and SGD
converges to the set of stationary points satisfying L′(θ) = 0.

In order to apply SGD as a matrix factorization method, we set θ = (W, H) and
decompose the loss L as in (1) for an appropriate training set Z and local loss
function l. Denote by Lz(θ)= Li j(θ)= l(Vi j, Wi∗, H∗ j) the local loss at position
z = (i, j). We have L′(θ) = ∑

z
L′z(θ) by the sum rule for differentiation. DGD

methods exploit the summation form of L′(θ) at each iteration by computing
the local gradients L′z(θ) in parallel and summing them. In contrast to this exact
computation of the overall gradient, SGD obtains noisy gradient estimates by
scaling up just one of the local gradients, i.e., L̂′(θ) = NL′z(θ) ,where N = |Z|
and the training point z is chosen randomly from the training set. Algorithm 1
uses SGD to perform matrix factorization.

ICME, Stanford University 7



CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

Algorithm 1 SGD for Matrix Factorization
Require: A training set Z, initial values W0 and H0
while not converged do /∗ step∗/
Select a training point (i, j) ∈ Z uniformly at random.

W ′i∗←Wi∗− ∈n N
∂

∂Wi∗
l(Vi j, Wi∗, H∗ j)

H∗ j← H∗ j− ∈n N
∂

∂H∗ j
l(Vi j, Wi∗, H∗ j)

Wi∗←W ′i∗

end while

Note that, after selecting a random training point (i, j) ∈ Z, all we have to up-
date is Wi∗ and H∗ j. We don’t have to update the factors of the form Wi′∗ for
i′ 6= i or H∗ j′ for j′ 6= j. That’s because we are representing the global loss as a
summation of all local losses. In particular,

∂

∂Wi′k
Li j(W, H) =

{
0 if i 6= i′

∂

∂Wik
l(Vi j, Wi∗, H∗ j) otherwise

and
∂

∂Hk j′
Li j(W, H) =

{
0 if j 6= j′

∂

∂Hk j
l(Vi j, Wi∗, H∗ j) otherwise

for 1≤ k ≤ r.

SGD is considered an online learning algorithm as it averages multiple local
losses rather than the exact loss at each step which we calculate in GD. This
naturally raises the questions about its merits as an alternative. The problem
with getting the exact losses using GD is basically its very high computation
costs. Hence, using noisy estimates for the gradient rather than the exact gradi-
ent is much cheaper computationally and we would be able to go many updates
in SGD in the same amount of time it would take us to make one GD update.
The noisy process also helps in escaping local minima (especially those with a
small basin of attraction and more so in the beginning, when the step sizes are
large). Moreover, SGD is able to exploit repetition within the data. Parameter
updates based on data from a certain row or column will also decrease the loss
in similar rows and columns. Thus the more similarity there is, the better SGD
performs. Ultimately, the hope is that the increased number of steps leads to
faster convergence. This behavior can be proven for some problems, and it has
been observed in the case of large-scale matrix factorization. It’s crucial to note
that ALS has higher time complexity per iteration compared to SGD.
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Chapter 3

Distributed Stochastic Gradient Descent

3.1 Overcoming Sequential Nature of SGD

The problem with SGD is that it is an inherently sequential algorithm. Even
when we divide the matrix into blocks (called Stratified SGD ”SSGD”) and
pick blocks to update at the same time, blocks’ updates can be dependent (i.e.
we need the update in one block in order to update another block. A simple
representation is shown below:

Figure 3.1: SGD Sequential Update

Clearly from the figure above, we can’t both zn and zn+1 along with their cor-
responding factor matrices simultaneously because the updates are dependent.
Both updates use Wi∗ and update it so zn has to be updated before proceeding
with updating zn+1.

The key idea behind DSGD is to stratify(divide into blocks) the training set Z
into a set S = {Z1, . . . , Zq} of q strata so that each individual stratum Zs ⊆ Z
can be processed in a distributed fashion. We do this by ensuring that each
stratum is d-monomial”.

A stratum Zs is d-monomial if it can be partitioned into d nonempty subsets
Z1

s ,Z
2
s , . . . , Zd

s such that i 6= i′ and j 6= j′ whenever (i, j)∈ Zb1
s and (i′, j′)∈ Zb2

s

ICME, Stanford University 9
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with b1 6= b2. A training matrix Zs is d-monomial if it is constructed from a d-
monomial stratum Zs.

For example, zn and zn+1 shown below can be updated at the same time:

Figure 3.2: SSGD Parallel Update

The idea behind DSGD is to find such blocks that have no data in common and
update them simulatenously.

The strata must cover the training set in that
q⋃

s=1

Zs = Z and the parallelism

parameter d is chosen to be greater than or equal to the number of available
processing tasks.

We first randomly permute the rows and columns of Z, and then create d× d
blocks of size (m/d)× (n/d) each; the factor matrices W and H are blocked
conformingly. This procedure ensures that the expected number of training
points in each of the blocks is the same, namely, N/d2. Then, for a permutation
j1, j2, . . . , jd of 1, 2, . . . , d, we can define a stratum as Zs = Z1 j1 ∪Z2 j2 ∪
·· · ∪Zd jd , where the substratum Zi j denotes the set of training points that fall
within block Zi j. Thus, a stratum corresponds to a set of blocks; the figure
below shows the set of possible strata when d = 3.

Figure 3.3: Strata for a 3×3 blocking of training matrix V

In general, the set S of possible strata contains d! elements, one for each pos-
sible permutation of 1, 2, . . . , d. We need 3 iterations in order to pass once

ICME, Stanford University 10
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through all blocks of the original matrix. In each iteration, we select d disjoint
strata (e.g. Z1, Z2 and Z3 or Z4, Z5, Z6) in figure 3.3

Given a set of strata and associated weights {ws}, the loss is decomposed into

a weighted sum of per-stratum losses: L(W, H) =
q

∑
s=1

wsLs(W, H) . Losses in

each stratum can be expressed as:

Ls(W, H) = cs ∑
(i, j)∈Zs

Li j(W, H)

where cs is a stratum-specific constant; see the discussion below. When running
SGD on a stratum, we use the gradient estimate

L̂′s(W, H) = NscsL′i j(W, H)

of L′s(W, H) in each step, i.e., we scale up the local loss of an individual train-
ing point by the size Ns = |Zs| of the stratum. Then any given loss function L of
the form can be represented as a weighted sum over these strata by choosing
ws and cs subject to wscs = 1.

The individual steps in DSGD are grouped into subepochs, each of which
amounts to processing one of the strata. The sequence of strata is chosen such
that the underlying SSGD algorithm, and hence the DSGD factorization al-
gorithm, is guaranteed to converge. Once a stratum ξk has been selected, we
perform Tk SGD steps on Zξk

; this is done in a parallel and distributed way
using the SGD algorithm described in the previous section. DSGD is shown in
the algorithm below, where we define an epoch as a sequence of d subepochs.
Each epoch roughly corresponds to processing the entire training set once.

Algorithm 2 DSGD for Matrix Factorization
Require: Z, W0, H0, cluster size d
W←W0 and H← H0
Block Z/W/H into d×d/d×1/1×d blocks
while not converged do /∗ epoch∗/
Pick step size ∈
for s = 1, . . . , d do /∗ subepoch∗/
Pick d blocks {Z1 j1, . . . , Zd jd} to form a stratum
for b = 1, . . . , d do /∗ in paralle l∗/
Run SGD on the training points in Zb jb (step size =∈)
end for end for end while

ICME, Stanford University 11
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Figure 3.4: DSGD Algorithm Step-by-Step
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3.2 Implementation in PySpark

We present our code in PySpark below:
1

2

3 ””” T h i s s c r i p t run s DSGD on m a t r i x f a c t o r i z a t i o n u s i n g Spark ”””
4 i m p o r t os
5 i m p o r t s y s
6 i m p o r t numpy as np
7 f rom numpy i m p o r t l i n a l g
8 i m p o r t m u l t i p r o c e s s i n g
9 i m p o r t c s v

10 f rom o p e r a t o r i m p o r t i t e m g e t t e r
11 f rom s c i p y i m p o r t s p a r s e
12

13

14

15 SPARK HOME = ” / Users / b a a l b a k i / Documents / S t a n f o r d / CME323 / P r o j e c t / s p a r k ” #
SPARK Path

16 PYTHONPATH=SPARK HOME / p y t hon /+ PYTHONPATH
17 PYTHONPATH=SPARK HOME / p y t hon / l i b / py4 j −0.8.2.1− s r c . z i p+PYTHONPATH
18 os . e n v i r o n [ ”SPARK HOME” ] = SPARK HOME
19 os . e n v i r o n [ ”SPARK LOCAL IP” ] = ” 1 2 7 . 0 . 0 . 1 ” # S e t t i n g up Loca l IP
20 s y s . pa th . append (SPARK HOME + ” / p y t h o n ” )
21 f rom p y s p a r k i m p o r t S pa rk C on te x t , SparkConf
22

23 d e f main ( numberOfFactors , numberOfWorkers , i t e r a t i o n s , modelBeta ,
modelLambda , inpu tPa thOfV , outputPathOfW , ou tpu tPa thOfH ) :

24 p r i n t ’ A l g o r i t h m i n P r o g r e s s ’
25 numberOfWorkers = i n t ( numberOfWorkers )
26 i t e r a t i o n s = i n t ( i t e r a t i o n s )
27 numberOfFac tors = i n t ( numberOfFac tors )
28 modelBeta = f l o a t ( modelBeta )
29 modelLambda = f l o a t ( modelLambda )
30 c o n f = SparkConf ( ) . setAppName ( ’ CME323Project ’ ) . s e t M a s t e r ( ’ l o c a l ’ )
31 # sc = S p a r k C o n t e x t ( c o n f=c o n f ) #No need t o d e f i n e sc aga in
32 i f os . pa th . i s d i r ( i n p u t P a t h O f V ) :
33 p = m u l t i p r o c e s s i n g . Pool ( )
34 a l l P a t h s = [ os . pa t h . j o i n ( inpu tPa thOfV , f ) f o r f i n os . l i s t d i r (

i n p u t P a t h O f V ) ]
35 r e s = p . map ( rawFi leFormat , a l l P a t h s )
36 p . c l o s e ( )
37 f l a t R e s u l t s = [ i t e m f o r s u b l i s t i n r e s f o r i t e m i n s u b l i s t ]
38 f i l e n a m e = open ( ’ o u t p u t . t x t ’ , ’w ’ )
39 f i l e n a m e . w r i t e ( ’\n ’ . j o i n ( f l a t R e s u l t s ) )
40 da ta = sc . p a r a l l e l i z e ( f l a t R e s u l t s )
41 e l i f os . p a th . i s f i l e ( i n p u t P a t h O f V ) :
42 da ta = sc . t e x t F i l e ( i n p u t P a t h O f V )
43 e l s e :
44 r a i s e E x c e p t i o n ( ” I n p u t F i l e Path i s i n v a l i d ” )
45

46 # F o r m a t t i n g V
47 sp l i tRDD = da ta . map ( lambda x : x . s p l i t ( ’ , ’ ) )
48 VRDD = spl i tRDD . map ( lambda x : map ( lambda y : i n t ( y ) , x ) ) . s o r t B y ( lambda x :

( x [ 0 ] , x [ 1 ] ) )
49

50

51

52 ## I n i t i a l i z i n g v a r i a b l e s
53 t = 100
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54 numberOfCounts = 0
55 c u r r e n t I t e r a t i o n = 0
56 i s E r r o r = F a l s e
57 r e c o n s t r u c t i o n E r r o r = [ ]
58

59

60 i f i s E r r o r :
61 WVectorRDD = spl i tRDD . map ( lambda x : i n t ( x [ 0 ] ) ) . d i s t i n c t ( ) . s o r t B y (

lambda x : x ) . map ( lambda x : t u p l e ( [ x , np . random . rand ( 1 ,
numberOfFac tors ) . a s t y p e ( np . f l o a t 3 2 ) ] ) )

62 HVectorRDD = spl i tRDD . map ( lambda x : i n t ( x [ 1 ] ) ) . d i s t i n c t ( ) . s o r t B y (
lambda x : x ) . map ( lambda x : t u p l e ( [ x , np . random . rand (
numberOfFactors , 1 ) . a s t y p e ( np . f l o a t 3 2 ) ] ) )

63 V , s e l e c t i o n = l o a d M a t r i x S p a r s e ( i n p u t P a t h O f V )
64 w h i l e c u r r e n t I t e r a t i o n != i t e r a t i o n s :
65 f o r s t r a t u m i n xrange ( 0 , numberOfWorkers−1) :
66 keyedV = VRDD. keyBy ( lambda x : x [0]% numberOfWorkers ) .

p a r t i t i o n B y ( numberOfWorkers )
67 p a r t i t i o n e d V = keyedV . f i l t e r ( lambda x : ( x [1][1]+ s t r a t u m )%

numberOfWorkers==x [ 0 ] )
68 keyedH = HVectorRDD . keyBy ( lambda x : ( x [0]+ s t r a t u m )%

numberOfWorkers ) . p a r t i t i o n B y ( numberOfWorkers )
69 keyedW = WVectorRDD . keyBy ( lambda x : x [0]% numberOfWorkers ) .

p a r t i t i o n B y ( numberOfWorkers )
70 RDDsCombined = p a r t i t i o n e d V . groupWith ( keyedH , keyedW )
71 outputRDD = RDDsCombined . m a p P a r t i t i o n s ( lambda x :

mapLossNZSL ( x , numberOfFac tors ) ) . reduceByKey ( lambda x , y :
x+y )

72 WVectorRDD = outputRDD . f i l t e r ( lambda x : x [0]== ’W’ ) . f l a t M a p (
lambda x : x [ 1 ] )

73 HVectorRDD = outputRDD . f i l t e r ( lambda x : x [0]== ’H’ ) . f l a t M a p (
lambda x : x [ 1 ] )

74 outputW = WVectorRDD . c o l l e c t ( )
75 outputW . s o r t ( )
76 outpu tH = HVectorRDD . c o l l e c t ( )
77 outpu tH . s o r t ( )
78

79

80 W = outputW [ 0 ] [ 1 ]
81 t emporaryCoun t = 1
82 f o r WIndex i n xrange ( 2 , outputW [−1][0]+1) :
83 i f outputW [ temporaryCoun t ] [ 0 ] == WIndex :
84 W = np . v s t a c k ( [W, outputW [ temporaryCoun t ] [ 1 ] ] )
85 t emporaryCoun t += 1
86 e l s e :
87 W = np . v s t a c k ( [W, np . z e r o s ( ( 1 , numberOfFac tors ) ) ] )
88

89 H = outpu tH [ 0 ] [ 1 ]
90 t emporaryCoun t = 1
91 f o r HIndex i n xrange ( 2 , ou tpu tH [−1][0]+1) :
92 i f ou tpu tH [ temporaryCoun t ] [ 0 ] == HIndex :
93 H = np . h s t a c k ( [H, ou tpu tH [ temporaryCoun t ] [ 1 ] ] )
94 t emporaryCoun t += 1
95 e l s e :
96 H = np . h s t a c k ( [H, np . z e r o s ( ( numberOfFactors , 1 ) ) ] )
97

98

99 e r r o r = c a l c E r r o r ( V ,W, H, s e l e c t i o n )
100 r e c o n s t r u c t i o n E r r o r . append ( e r r o r )
101 p r i n t ” R e c o n s t r u c t i o n e r r o r : ” , e r r o r
102 c u r r e n t I t e r a t i o n += 1
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103 i f c u r r e n t I t e r a t i o n == i t e r a t i o n s :
104 break
105 e l s e :
106 WVectorRDD = spl i tRDD . map ( lambda x : t u p l e ( [ i n t ( x [ 0 ] ) , 1 ] ) ) .

reduceByKey ( lambda x , y : x+y ) . map ( lambda x : t u p l e ( [ x [ 0 ] , t u p l e ( [ x
[ 1 ] , np . random . rand ( 1 , numberOfFac tors ) . a s t y p e ( np . f l o a t 3 2 ) ] ) ] ) )

107 HVectorRDD = spl i tRDD . map ( lambda x : t u p l e ( [ i n t ( x [ 1 ] ) , 1 ] ) ) .
reduceByKey ( lambda x , y : x+y ) . map ( lambda x : t u p l e ( [ x [ 0 ] , t u p l e ( [ x
[ 1 ] , np . random . rand ( numberOfFactors , 1 ) . a s t y p e ( np . f l o a t 3 2 ) ] ) ] ) )

108 w h i l e c u r r e n t I t e r a t i o n != i t e r a t i o n s :
109 f o r s t r a t u m i n xrange ( 0 , numberOfWorkers−1) :
110 keyedV = VRDD. keyBy ( lambda x : x [0]% numberOfWorkers ) .

p a r t i t i o n B y ( numberOfWorkers )
111 p a r t i t i o n e d V = keyedV . f i l t e r ( lambda x : ( x [1][1]+ s t r a t u m )%

numberOfWorkers==x [ 0 ] )
112 keyedH = HVectorRDD . keyBy ( lambda x : ( x [0]+ s t r a t u m )%

numberOfWorkers ) . p a r t i t i o n B y ( numberOfWorkers )
113 keyedW = WVectorRDD . keyBy ( lambda x : x [0]% numberOfWorkers ) .

p a r t i t i o n B y ( numberOfWorkers )
114 RDDsCombined = p a r t i t i o n e d V . groupWith ( keyedH , keyedW )
115 outputRDD = RDDsCombined . m a p P a r t i t i o n s ( lambda x : mapLoss ( x ,

modelLambda , numberOfCounts , t , modelBeta ,
numberOfFac tors ) ) . reduceByKey ( lambda x , y : x+y )

116 WVectorRDD = outputRDD . f i l t e r ( lambda x : x [0]== ’W’ ) . f l a t M a p (
lambda x : x [ 1 ] )

117 HVectorRDD = outputRDD . f i l t e r ( lambda x : x [0]== ’H’ ) . f l a t M a p (
lambda x : x [ 1 ] )

118 numberOfCounts = ( outputRDD . f i l t e r ( lambda x : x [0]== ’N ’ ) .
c o l l e c t ( ) ) [ 0 ] [ 1 ]

119 c u r r e n t I t e r a t i o n += 1
120 i f c u r r e n t I t e r a t i o n == i t e r a t i o n s :
121 break
122

123 i f i s E r r o r :
124 HFile = open ( outputPathOfH , ’ h ’ )
125 WFile = open ( outputPathOfW , ’w ’ )
126 NZSLPrintCsv ( outputW , WFile , outputH , HFile , numberOfFac tors )
127 p r i n t r e c o n s t r u c t i o n E r r o r
128 e l s e :
129 outputW = WVectorRDD . c o l l e c t ( )
130 outputW . s o r t ( )
131 WFile = open ( outputPathOfW , ’w ’ )
132 outpu tH = HVectorRDD . c o l l e c t ( )
133 outpu tH . s o r t ( )
134 HFile = open ( outputPathOfH , ’ h ’ )
135 W = outputW [ 0 ] [ 1 ] [ 1 ]
136 t emporaryCoun t = 1
137 f o r WIndex i n xrange ( 2 , outputW [−1][0]+1) :
138 i f outputW [ temporaryCoun t ] [ 0 ] == WIndex :
139 W = np . v s t a c k ( [W, outputW [ temporaryCoun t ] [ 1 ] [ 1 ] ] )
140 t emporaryCoun t += 1
141 e l s e :
142 W = np . v s t a c k ( [W, np . z e r o s ( ( 1 , numberOfFac tors ) ) ] )
143 H = outpu tH [ 0 ] [ 1 ] [ 1 ]
144 t emporaryCoun t = 1
145 f o r HIndex i n xrange ( 2 , ou tpu tH [−1][0]+1) :
146 i f ou tpu tH [ temporaryCoun t ] [ 0 ] == HIndex :
147 H = np . h s t a c k ( [H, ou tpu tH [ temporaryCoun t ] [ 1 ] [ 1 ] ] )
148 t emporaryCoun t += 1
149 e l s e :
150 H = np . h s t a c k ( [H, np . z e r o s ( ( numberOfFactors , 1 ) ) ] )

ICME, Stanford University 15



CME323: Large-Scale Matrix Factorization with Distributed Stochastic Gradient Descent in Spark

151 np . s a v e t x t ( outputPathOfW , W, d e l i m i t e r =” , ” )
152 np . s a v e t x t ( outputPathOfH , H, d e l i m i t e r =” , ” )
153

154 d e f LoadMatr ix ( c s v f i l e ) :
155 da ta = np . g e n f r o m t x t ( c s v f i l e , d e l i m i t e r = ’ , ’ )
156 r e t u r n np . m a t r i x ( da ta )
157

158 d e f P r i n t C s v ( outputW , WFile , outputH , HFile , numberOfFac tors ) :
159 t emporaryCoun t = 0
160 f o r WIndex i n xrange ( 1 , outputW [−1][0]+1) :
161 i f outputW [ temporaryCoun t ] [ 0 ] == WIndex :
162 WFile . w r i t e ( ’ , ’ . j o i n ( [ ’ %.5 f ’ % num f o r num i n ( outputW [

temporaryCoun t ] [ 1 ] [ 1 ] ) . t r a n s p o s e ( ) ] )+ ’\n ’ )
163 t emporaryCoun t += 1
164 e l s e :
165 WFile . w r i t e ( ’ , ’ . j o i n ( [ ’ 0 ’ ]∗ numberOfFac tors )+ ’\n ’ )
166

167 t emporaryCoun t = 0
168 f o r HIndex i n xrange ( 1 , ou tpu tH [−1][0]+1) :
169 i f ou tpu tH [ temporaryCoun t ] [ 0 ] == HIndex :
170 HFile . w r i t e ( ’ , ’ . j o i n ( [ ’ %.5 f ’ % num f o r num i n outpu tH [

temporaryCoun t ] [ 1 ] [ 1 ] ] ) + ’\n ’ )
171 t emporaryCoun t += 1
172 e l s e :
173 HFile . w r i t e ( ’ , ’ . j o i n ( [ ’ 0 ’ ]∗ numberOfFac tors )+ ’\n ’ )
174 WFile . c l o s e ( )
175 HFile . c l o s e ( )
176

177 d e f NZSLPrintCsv ( outputW , WFile , outputH , HFile , numberOfFac tors ) :
178 t emporaryCoun t = 0
179 f o r WIndex i n xrange ( 1 , outputW [−1][0]+1) :
180 i f outputW [ temporaryCoun t ] [ 0 ] == WIndex :
181 WFile . w r i t e ( ’ , ’ . j o i n ( [ ’ %.5 f ’ % num f o r num i n ( outputW [

temporaryCoun t ] [ 1 ] ) . t r a n s p o s e ( ) ] )+ ’\n ’ )
182 t emporaryCoun t += 1
183 e l s e :
184 WFile . w r i t e ( ’ , ’ . j o i n ( [ ’ 0 ’ ]∗ numberOfFac tors )+ ’\n ’ )
185

186 t emporaryCoun t = 0
187 f o r HIndex i n xrange ( 1 , ou tpu tH [−1][0]+1) :
188 i f ou tpu tH [ temporaryCoun t ] [ 0 ] == HIndex :
189 HFile . w r i t e ( ’ , ’ . j o i n ( [ ’ %.5 f ’ % num f o r num i n ( ou tpu tH [

temporaryCoun t ] [ 1 ] ) ] )+ ’\n ’ )
190 t emporaryCoun t += 1
191 e l s e :
192 HFile . w r i t e ( ’ , ’ . j o i n ( [ ’ 0 ’ ]∗ numberOfFac tors )+ ’\n ’ )
193 WFile . c l o s e ( )
194 HFile . c l o s e ( )
195 r e t u r n True
196

197 d e f rawFi leFormat ( f i l e P a t h ) :
198 o u t p u t = [ ]
199 f i l e = open ( f i l e P a t h )
200 movie = ( f i l e . r e a d l i n e ( ) ) [:−2]
201 f o r l i n e i n f i l e :
202 r a t i n g s = l i n e . s p l i t ( ” , ” )
203 o u t p u t . append ( r a t i n g s [0]+ ’ , ’+movie+ ’ , ’+ r a t i n g s [ 1 ] )
204 r e t u r n o u t p u t
205

206 d e f mapLoss ( k e y e d I t e r , modelLambda , numberOfCounts , t , modelBeta ,
numberOfFac tors ) :
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207 i t e r a b l e L i s t = ( k e y e d I t e r . n e x t ( ) ) [ 1 ]
208 i t e r a b l e V = i t e r a b l e L i s t [ 0 ]
209 i t e r a b l e H = i t e r a b l e L i s t [ 1 ]
210 i t e r a b l e W = i t e r a b l e L i s t [ 2 ]
211

212 WDic t ionary = {}
213 H D i c t i o n a r y = {}
214

215 newWDict ionary = {}
216 newHDic t ionary = {}
217

218 f o r e lementOfH i n i t e r a b l e H :
219 H D i c t i o n a r y [ elementOfH [ 0 ] ] = elementOfH [ 1 ]
220

221 f o r elementOfW i n i t e r a b l e W :
222 WDic t ionary [ elementOfW [ 0 ] ] = elementOfW [ 1 ]
223

224 f o r e lemen tOfV i n i t e r a b l e V :
225 ( i , j , r a t i n g ) = e lementOfV
226 eps = np . power ( t + numberOfCounts , −modelBeta )
227 i f j i n H D i c t i o n a r y :
228 i npu tH = H D i c t i o n a r y [ j ]
229 e l s e :
230 H D i c t i o n a r y [ j ] = t u p l e ( [ j , np . random . rand ( numberOfFactors , 1 )

. a s t y p e ( np . f l o a t 3 2 ) ] )
231 i npu tH = H D i c t i o n a r y [ j ]
232 i f i i n WDic t ionary :
233 inputW = WDic t ionary [ i ]
234 e l s e :
235 WDic t ionary [ i ] = t u p l e ( [ i , np . random . rand ( 1 , numberOfFac tors )

. a s t y p e ( np . f l o a t 3 2 ) ] )
236 inputW = WDic t ionary [ i ]
237 (WNew, HNew) = L2Loss ( r a t i n g , inputH , inputW , modelLambda , eps )
238 numberOfCounts += 1
239 newWDict ionary [ i ] = WNew
240 newHDic t ionary [ j ] = HNew
241

242

243 r e t u r n ( t u p l e ( [ ’W’ , newWDict ionary . i t e m s ( ) ] ) , t u p l e ( [ ’H’ ,
newHDic t ionary . i t e m s ( ) ] ) , t u p l e ( [ ’N ’ , numberOfCounts ] ) )

244

245 d e f L2Loss ( r a t i n g , elementOfH , elementOfW , modelLambda , eps ) :
246 (NH, arrayOfH ) = elementOfH
247 (WN, arrayOfW ) = elementOfW
248

249 WOld = arrayOfW . copy ( )
250 HOld = arrayOfH . copy ( )
251

252

253 Grad = −2∗( r a t i n g−np . a s s c a l a r ( WOld . d o t ( HOld ) ) )
254

255 arrayOfW = np . add ( WOld , np . m u l t i p l y ( eps , np . m u l t i p l y ( HOld . t r a n s p o s e ( )
, Grad ) + np . m u l t i p l y (2∗modelLambda /WN, WOld ) ) )

256 arrayOfH = np . add ( HOld , np . m u l t i p l y ( eps , np . m u l t i p l y ( WOld . t r a n s p o s e ( ) ,
Grad ) + np . m u l t i p l y (2∗modelLambda /NH, HOld ) ) )

257

258 r e t u r n ( t u p l e ( [WN, arrayOfW ] ) , t u p l e ( [NH, arrayOfH ] ) )
259

260 d e f mapLossNZSL ( k e y e d I t e r , numberOfFac tors ) :
261 i t e r a b l e L i s t = ( k e y e d I t e r . n e x t ( ) ) [ 1 ]
262 i t e r a b l e V = i t e r a b l e L i s t [ 0 ]
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263 i t e r a b l e H = i t e r a b l e L i s t [ 1 ]
264 i t e r a b l e W = i t e r a b l e L i s t [ 2 ]
265

266 WDic t ionary = {}
267 H D i c t i o n a r y = {}
268

269 newWDict ionary = {}
270 newHDic t ionary = {}
271

272 f o r e lementOfH i n i t e r a b l e H :
273 H D i c t i o n a r y [ elementOfH [ 0 ] ] = elementOfH [ 1 ]
274

275 f o r elementOfW i n i t e r a b l e W :
276 WDic t ionary [ elementOfW [ 0 ] ] = elementOfW [ 1 ]
277

278 f o r e lemen tOfV i n i t e r a b l e V :
279 ( i , j , r a t i n g ) = e lementOfV
280 i f j i n H D i c t i o n a r y :
281 i npu tH = H D i c t i o n a r y [ j ]
282 e l s e :
283 H D i c t i o n a r y [ j ] = np . random . rand ( numberOfFactors , 1 ) . a s t y p e (

np . f l o a t 3 2 )
284 i npu tH = H D i c t i o n a r y [ j ]
285 i f i i n WDic t ionary :
286 inputW = WDic t ionary [ i ]
287 e l s e :
288 WDic t ionary [ i ] = np . random . rand ( 1 , numberOfFac tors ) . a s t y p e (

np . f l o a t 3 2 )
289 inputW = WDic t ionary [ i ]
290 (WNew, HNew) = NZSLLoss ( r a t i n g , inputH , inputW )
291 newWDict ionary [ i ] = WNew
292 newHDic t ionary [ j ] = HNew
293

294 r e t u r n ( t u p l e ( [ ’W’ , newWDict ionary . i t e m s ( ) ] ) , t u p l e ( [ ’H’ ,
newHDic t ionary . i t e m s ( ) ] ) )

295

296 d e f NZSLLoss ( r a t i n g , arrayOfH , arrayOfW ) :
297 WOld = arrayOfW . copy ( )
298 HOld = arrayOfH . copy ( )
299 Grad = −2∗( r a t i n g−np . a s s c a l a r ( WOld . d o t ( HOld ) ) )
300

301 arrayOfW = np . add ( WOld , np . m u l t i p l y ( HOld . t r a n s p o s e ( ) , Grad ) )
302 arrayOfH = np . add ( HOld , np . m u l t i p l y ( WOld . t r a n s p o s e ( ) , Grad ) )
303

304 r e t u r n ( arrayOfW , arrayOfH )
305

306 d e f l o a d M a t r i x S p a r s e ( c s v f i l e ) :
307 v a l u e = [ ]
308 rows = [ ]
309 columns = [ ]
310 s e l e c t i o n = [ ]
311 f i l e = open ( c s v f i l e )
312 r e a d e r F i l e = c s v . r e a d e r ( f i l e )
313 f o r l i n e i n r e a d e r F i l e :
314 rows . append ( i n t ( l i n e [ 0 ] )−1 )
315 columns . append ( i n t ( l i n e [ 1 ] )−1 )
316 v a l u e . append ( i n t ( l i n e [ 2 ] ) )
317 s e l e c t i o n . append ( ( i n t ( l i n e [ 0 ] ) −1, i n t ( l i n e [ 1 ] ) −1) )
318 r e t u r n s p a r s e . c s r m a t r i x ( ( va lue , ( rows , columns ) ) ) , s e l e c t i o n
319

320 d e f c a l c E r r o r ( V , W, H, s e l e c t i o n ) :
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321 p r i n t
322 d i f f e r e n c e = V−W. d o t (H)
323 e r r = 0
324 f o r rows , columns i n s e l e c t i o n :
325 e r r += d i f f e r e n c e [ rows , columns ]∗ d i f f e r e n c e [ rows , columns ]
326 r e t u r n e r r / l e n ( s e l e c t i o n )
327

328 i f n a m e == ” m a i n ” :
329

330 # main ( 1 0 , 2 , 1 , 0 . 8 , 1 . 0 , ’ t e s t . t x t ’ , ’w . c s v ’ , ’ h . c s v ’ )
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Chapter 4

Results

4.1 Analysis

In this section, we analyze our the performance of DSGD as a matrix factor-
ization method for Recommender Systems. We look at different aspects:

4.1.1 Convergence

As noted previously, DSGD is guaranteed to converge. In our tests, DSGD and
ALS converged in the same manner but DSGD reported higher Risk Square
Mean Error (RMSE). However, the difference in RMSE between them wasn’t
significant but it’s important to note that both methods converge faster than
other methods and achieve lower RMSE.

4.1.2 Communication Costs

In DSGD, the d-monomial strata representation has reduced communication
costs. We have a block to block communication between epochs. Each ma-
chine will have to send data to one single machine and receive data from one
single machine.

4.1.3 Shuffle Size

When executing DSGD on d nodes in a shared-nothing environment such as
SPARK, the input matrix is only distributed once. Then, the only data that are
transmitted between nodes during subsequent processing are (small) blocks
of factor matrices. In this DSGD implementation, node i stores blocks W i,Zi1,Zi2,

. . .Zid for 1≤ i≤ d; thus only matrices H1,H2, . . . , Hd need be transmitted. (If
the W i matrices are smaller, then we transmit these instead). Note that DSGD
only shuffles strata and blocks where as SGD shuffles all data.
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4.1.4 Scalability

• Input Size: We tested the DSGD algorithm in SPARK on a sample of Net-
flix Problem dataset and we used different size of data and different number
of available ratings (i.e. different sparsity levels).

Rank Wall Clock Time Per Epoch
(s)

50 120
100 125
200 135

DSGD scaled very well in terms of matrix dimensions and also number
of values in a matrix.

• Number of Machines: We also tested the same dataset on different num-
ber of cores on a local machine (1 core, 2 cores, 4 cores). We also ran the
ALS method already implemented in MLlib as a reference for comparison.
Table Below shows results.

Wall Clock Time
Number of Cores Our DSGD MLlib ALS

1 X X
2 0.50X 0.51X
4 0.26X 0.25X

DSGD scaled almost linearly when the number of cores was small.
Since DSGD’s majority of the time is spent on communication costs,we
suspected that the scalability might not be as efficient if the number of
cores become too large so that the size of each stratum block is relatively
small. To verify this intuition, we tested the dataset on AWS and used mul-
tiple cores (8 cores, 16 cores, 32 cores, 46 cores). The table below shows
the results:

of Cores Wall Clock Time Per Epoch
8 X

16 0.52X
32 0.27X
64 0.24X

As expected, the scalability of DSGD got much worse when the number
of cores increased relative to the input size.
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4.2 Conclusion & Future Scope

In practice, e-commerce sites like amazon.com experience tremendous amount
of user visits per day. Recommending items to these large number of users in
real-time requires the underlying recommendation engine to be highly scalable.
Considering that the majority of time spent by SPARK ALS is on calculations
rather than communication, SPARK ALS scales better than DSGD in practice.
That is confirmed by the extensive use of parallel ALS in practice.

Regarding convergence, DSGD is proven to converge while there is no theory
that SPARK ALS must converge; however, feedback reported from practical
applications have confirmed that SPARK ALS converges faster than DSGD.

Since training data is sparse and we stratify the training set using data-independent
blocking, a block Zb may contain no training points; in this case we cannot ex-
ecute SGD on the block, so the corresponding factors simply remain at their
initial values.

Hence, we would like to examine other ways to stratify which could be data
dependent so as to keep the size of available rating in each block similar for
example. That should reduce our convergence time.

It’s very important to note that SPARK is much more efficient that MapReduce
for implementing DSGD as it operates on data in memory and it doesn’t have
to write to disk after each iteration. However, We recommend MLlib ALS as the
better Matrix Factorization approach for Recommender Systems.
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