
Reza Zadeh

Pregel and GraphX

@Reza_Zadeh | http://reza-zadeh.com

Overview

Graph Computations and Pregel"

Introduction to Matrix Computations

Graph Computations and Pregel

Data Flow Models
Restrict the programming interface so that the
system can do more automatically
Express jobs as graphs of high-level operators
» System picks how to split each operator into tasks

and where to run each task
» Run parts twice fault recovery

New example: Pregel (parallel graph google)

Pregel

oogle

Expose specialized APIs to simplify graph
programming.

“Think like a vertex”

Graph-Parallel Pattern

6	

Model / Alg.
State

Computation depends
only on the neighbors

Pregel	Data	Flow	
Input	graph	 Vertex	state	1	 Messages	1	

Superstep	1	

Vertex	state	2	 Messages	2	

Superstep	2	

.			.			.	

Group	by	vertex	ID	

Group	by	vertex	ID	

Simple	Pregel	in	Spark	
Separate	RDDs	for	immutable	graph	state	and	
for	vertex	states	and	messages	at	each	iteration	

Use	groupByKey	to	perform	each	step	

Cache	the	resulting	vertex	and	message	RDDs	

Optimization:	co-partition	input	graph	and	
vertex	state	RDDs	to	reduce	communication	

Update ranks in parallel
Iterate until convergence

Rank of
user i Weighted sum of

neighbors’ ranks

Example: PageRank
R[i] = 0.15 +

X

j2Nbrs(i)

wjiR[j]

PageRank	in	Pregel	
Input	graph	 Vertex	ranks	1	 Contributions	1	

Superstep	1	(add	contribs)	

Vertex	ranks	2	 Contributions	2	

Superstep	2	(add	contribs)	

.			.			.	

Group	&	add	by	vertex	

Group	&	add	by	vertex	

GraphX

Provides	Pregel	message-passing	and	other	
operators	on	top	of	RDDs		

GraphX: Properties

GraphX: Triplets
The triplets operator joins vertices and edges:

F	

E	

Map Reduce Triplets
Map-Reduce for each vertex

D	

B	

A	

C	

 mapF()A	 B	

 mapF()A	 C	

A1	

A2	

 reduceF(,)A1	 A2	 A	

F	

E	

Example: Oldest Follower

D	

B	

A	

C	What is the age of the oldest
follower for each user?
val oldestFollowerAge = graph
 .mrTriplets(
 e=> (e.dst.id, e.src.age),//Map
 (a,b)=> max(a, b) //Reduce
)
 .vertices

23 42

30

19 75

16
15

Summary of Operators
All operations:
https://spark.apache.org/docs/latest/graphx-programming-guide.html#summary-list-of-operators

Pregel API:
https://spark.apache.org/docs/latest/graphx-programming-guide.html#pregel-api

The GraphX Stack"
(Lines of Code)

GraphX (3575)

Spark

Pregel (28) + GraphLab (50)

PageRank
(5)

Connected
Comp. (10)

Shortest
Path (10)

ALS
(40) LDA

(120)

K-core
(51) Triangle

Count
(45)

SVD
(40)

Optimizations
Overloaded vertices have their work
distributed

Optimizations

More examples
In your HW: Single-Source-Shortest Paths
using Pregel

Distributing Matrix Computations

Distributing Matrices
How to distribute a matrix across machines?
»  By Entries (CoordinateMatrix)
»  By Rows (RowMatrix)

»  By Blocks (BlockMatrix)
All of Linear Algebra to be rebuilt using these
partitioning schemes

As	of	version	1.3	

Distributing Matrices
Even the simplest operations require thinking
about communication e.g. multiplication

How many different matrix multiplies needed?
»  At least one per pair of {Coordinate, Row,

Block, LocalDense, LocalSparse} = 10
»  More because multiplies not commutative

Block Matrix Multiplication

Let’s look at Block Matrix Multiplication

(on the board and on GitHub)

