
CME 323: Distributed Algorithms and Optimization, Spring 2016

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 10, 4/27/2016. Scribed by Ting-Po Lee and Yu-Sheng Chen.

10 Introduction to Distributed Computing

10.1 Communication Protocols

Several communication patterns exist between machines:

• All to one

• One to all

• All to all

We introduce their communication patterns and the associated communication costs.

10.1.1 All to one communication with driver machine

Computation is distributed among multiple machines and the results are sent to a single driver

machine, as shown in Fig.1. Assume all machines are directly connected to driver machine the

bottleneck of this communication is the network interface of driver machine. Let p be the number

of machines (excluding driver), L be the latency between each pair of machines and the network

interface of driver machine has bandwidth B. Assume all machines send a message of size M to

the driver and driver ’s network interface is saturated by every single message. i.e. machines queue

up to send messages one at a time.

Each single message sent has cost:

L+
M

B

Thus the overal communication cost is:

p

(
L+

M

B

)
10.1.2 All to one communication as Bittorent Aggregate

Another algorithm for all to one communication is known as Bittorent Aggregate. As in one to all

communication computation is distributed among multiple machines but the results are aggregated

through the communication between each pair of machines. The aggregation pattern can be seen

as a tree structure or as depicted in Fig.2. Assume we are aggregating results from p machines,

the results can be aggregated to a single machine in log2 p rounds. Let L be the latency and B be

1

http://stanford.edu/~rezab/dao 


Figure 1: All to one communication with driver machine

Figure 2: All to one communication with Bittorent Aggregate

the bandwidth between each pair of machines and in each aggregation round a message of size M

is sent between machine pairs. The total communication cost is:

(log2 p)

(
L+

M

B

)

10.1.3 One to one communication

One to all communication has the same network configuration as all to one communication only with

opposite data flow directions. The driver machine sends messages of size M to p other machines

and driver machine’s network interface is still the bottleneck of communication. Communication

cost is the same as one to all communication with driver machine.

Also, we can borrow the concept of Bittorent Aggregate such that the message is relayed among

machines in tree structure. Then the message can be spread among all machines within O(log n)

2



Figure 3: Gradient descent with distributed training data

rounds.

10.1.4 All to all communication

There are situations where all machines have to communicate with each other. Sorting is one

example that requires all to all communication. Assume we have a large number of integers which

is exceeds the storage of a single machine. The numbers are shuffled and distributed among multiple

machines, each machine cannot determine the correct order of its numbers with communication with

all other machines.

Some, but not all problems require all to all communication and it’s valuable to find them.

Relational database operations JOIN and GROUPBY are two other examples. In fact these two

operations are implemented by sorting in many real world applications.

10.2 Gradient Descent

As described in previous lectures, many machine learning problems can be formulated as the fol-

lowing unconstrained optimization problems:

min
w
F (w) = min

w

n∑
i=0

Fi(w, xi, yi)

We solve the optimization problem through gradient descent. In each iteration we have:

wk+1 = wk − α
n∑

i=0

5wFi(wk, xi, yi)

Where wk, wk+1 ∈ Rd, d is the number of parameters. Assume in training stage training data

{xi, yi}ni=1 is distributed across machines as shown in Fig.3. Then in each gradient descent iteration,

it takes one round of all to one communication to aggregate the value
∑n

i=05wFi(wk, xi, yi) and

another round of one to all communicate to broadcast updated wk+1.

Here we list the communication terminologies usually used in distributed computing literature:

3



Figure 4: Relational JOIN

• All to one communication known as Reduce

• One to all communication known as Broadcast

• Reduce + braodcast known as All reduce

10.3 Relational JOIN

It is discussed previously that JOIN requires all to all communication and can be implemented

as sorting. The algorithm is briefly described as follow. Assume two tables T1, T2 having rows

{ki, D1i}ni=1 and {kj , D2j}mj=1 where rows are represented as tuple elements, k is the key we are

joining on and D1 and D2 denote other columns of T1 and T2, respectively. We can then put the

tuple elements of T1 and T2 in a single array A then sort with respect to k, elements with the same

key k will be grouped together. Traverse the sorted array A and for each key ki if we have elements

from both T1 and T2, output all cross-products.

10.4 Midterm Review

10.4.1 Parallel Algorithms

By far, we have covered parallel algorithms for the following problems:

• Sum, max and ⊕ any associative operations

• Prefix sum

• Matrix computations

• Graph connectivity

• Minimum spanning tree

• Optimization

4



The algorithms above were discussed under PRAM model. Also, with communication protocols

parallel algorithms for sum, max and ⊕ can also be considered in clusters.

In midterm problems, unless otherwise specified, one can assume set operation for binary search

trees (BSTs) on PRAMSs.

10.4.2 Scheduling

Greedy algorithm for scheduling problem of minimum makespan. The derivation of greedy com-

petitive ratio.

10.4.3 Brent’s Theorem

Assume p processors, Brent’s theorem states:

T1
p
≤ Tp ≤

T1
p

+ T∞

Note the lower bound holds even in clusters (where we have machines connected by network

instead of processors in PRAM) but the upper bound does not hold in clusters.

Given p processors, we can sum an array of size n with the parallel sum algorithm discussed in

class, which by Brent’s theorem gives us an asymptotic upper bound of:

Tp ≤ O
(
n

p

)
+O(log n)

However, we can simply assign n
p numbers to each processor and aggregate the results from

each processor sequentially, which gives:

Tp ≤ O
(
n

p

)
+O(p)

This simple implementation does not necessarily perform worse than the parallel sum algorithm

which gives O(log n) depth.

5


	10 Introduction to Distributed Computing
	10.1 Communication Protocols
	10.1.1 All to one communication with driver machine
	10.1.2 All to one communication as Bittorent Aggregate
	10.1.3 One to one communication
	10.1.4 All to all communication

	10.2 Gradient Descent
	10.3 Relational JOIN
	10.4 Midterm Review
	10.4.1 Parallel Algorithms
	10.4.2 Scheduling
	10.4.3 Brent's Theorem



