CME 323: Distributed Algorithms and Optimization, Spring 2015
http://stanford.edu/~rezab/dao.
Instructor: Reza Zadeh, Matroid and Stanford.

Lecture 8, 4/20/2016. Scribed by Irwan Bello, David Flatow.

Many learning algorithms can be formalized with the following unconstrained optimization
problem:

n
min - F(w) = > Fi(w, i, i)
i=0
where i indexes the data, z; € R? is an input vector, y; € R is a label and w is the parameter.
There are 2 quantities of interest when scaling such algorithms:

e Data parallelism: How does the algorithm scale with n (number of training points)?
e Model parallelism: How does the algorithm scale with d (number of parameters)?
The objective function F depends on the problem at hand. Some examples include:

e cross-entropy (e.g: for logistic regression or neural nets)

e hinge 1os Fi(w,z;,y;) = max(1 — y;(z]w)) with y; € {~1,+1} (e.g: for SVM)

e (linear) least squares F;(w,z;,y;) = ||zFw — vil|3

Note, in practice we often have hyper-parameters, but changing them is manual and is typically

an embarrassingly parallel problem.

8 Optimization Algorithms

8.1 Gradient Descent

WEe’ll focus our analysis on linear least squares. In particular, we consider the complexity of com-
puting the gradient of the least squares objective (many optimization algorithms rely on computing

the gradient). The linear least squares objective:
n n
F(w) =Y Fi(w,zi,y:) =Y |lef w —yill3
i=1 i=1

has gradient
n

A F = Z Ay Fi(w) = ZQ(xiTw —y;)x; € R?
i=1 ;

=1

'Non-differentiable but still convex and can have subgradients

http://stanford.edu/~rezab/dao

Computing the gradient for a single datapoint can be done in O(logd) depth (the computation
being dominated by the dot product operation). The global gradient A, F' then requires O(log d) +
O(logn) depth.

Assuming gradient descent requires T iterationsE| we have the form:

Wit < wi — @AF(wy)

For kK = 1...T. We also assume a constant step size and fixed o < % where L is the lipschitz

constant. Thus, the total depth is O(T'log d) + O(T logn), which means that our algorithm is slow
even with multiple processors. The problem is the sequential nature of the gradient updates that
is not easily paralellized.

8.2 Stochastic Gradient Descent

This motivates the use of stochastic gradient descent (SGD) where the gradient is computed on a
batch of data sampled uniformly from the training set. This works because the mini-batch gradient
is equal in expectation to the full batch gradient, so the number of iterations to converge doesn’t
necessarily increase linearly to the inverse of the proportion of points being sampled, while the
work decreases linearly with this proportion.

The table below summarizes the performance of gradient descent vs stochastic gradient descentE|
where € is our tolerance for convergence.

. # iterations | work/iter depth/iter total work total depth
GD O(log 1) O(nd) | O(logd+logn) | O(ndlog 1) | O((log1)(logd + logn))
SGD o) 0(d) O(log d) o) O(*ed)

A further improvement on scaling gradient descent comes from the Hogwild![I] idea: it turns
out that many statistical algorithms can be run in parallel without locks and still converge under
certain assumptionﬂ

8.3 Hogwild!

Hogwild for SGD is simply to never lock waiting for wy computations to finish and instead just
reuse current wg.

Alternatively it is possible to assign a single processor to each AF; computation and have the
processors write updates to their respectively assigned w; and move on without waiting / locking.
This is more common in practice. When the single processor is finished with it’s AF; that update
is applied to the current value of w rather than from the weight vector that was the basis for
computing AF;.

2Here, to simplify the analysis, we assume the algorithm converges in T steps, later we’ll address this in more
detail

3There’s a hidden O(log(n)) cost to sampling from a uniform random variable

4The assumptions here are on the sparsity of the training data and relative rates of processors; however, in practice
Hogwild performs well for many applications

Communication in GD/SGD happens at each iteration: O(2) vs O(log 1). Thus large differences
in the cost of communication between a single machine with shared memory and distributed cluster
may change the economics of the choice between GD and SGD. In practice we see single machine
architectures using SGD on big beefy GPUs for things like deep learning whereas we may see
distributed systems running GD.

9 Scheduling

The scheduler assigns sequential computation threads to processors. Brent’s theorem assumes an
optimal scheduling, where no processor is over/underused. One might think that this will be a
hard problem since, for example the related problem, Optimal Makespan Scheduling is is NP-hard.
However, we find that a greedy approach can yield a fast and easy algorithm with a competitive
approximation ratio.

References

[1] B. Recht, C. Re, S. Wright, F. Niu Hogwild: A Lock-Free Approach to Parallelizing Stochastic
Gradient Descent. NIPS, 2011.

	8 Optimization Algorithms
	8.1 Gradient Descent
	8.2 Stochastic Gradient Descent
	8.3 Hogwild!

	9 Scheduling

