
CME 323: Distributed Algorithms and Optimization, Spring 2015

http://stanford.edu/~rezab/dao.

Instructor: Reza Zadeh, Matriod and Stanford.

Lecture 4, 4/6/2016. Scribed by Henry Neeb, Christopher Kurrus, Andreas Santucci.

Overview

Today we will continue covering divide and conquer algorithms. We will generalize divide and

conquer algorithms and write down a general recipe for it. What’s nice about these algorithms

is that they are timeless; regardless of whether Spark or any other distributed platform ends up

winning out in the next decade, these algorithms always provide a theoretical foundation for which

we can build on. It’s well worth our understanding.

• Parallel merge sort

• General recipe for divide and conquer algorithms

• Parallel selection

• Parallel quick sort (introduction only)

Parallel selection involves scanning an array for the kth largest element in linear time. We then

take the core idea used in that algorithm and apply it to quick-sort.

Parallel Merge Sort

Recall the merge sort from the prior lecture. This algorithm sorts a list recursively by dividing the

list into smaller pieces, sorting the smaller pieces during reassembly of the list. The algorithm is

as follows:

Algorithm 1: MergeSort(A)

Input : Array A of length n

Output: Sorted A

1 if n is 1 then

2 return A

3 end

4 else

5 L← mergeSort(A[0, ..., n
2))

6 R← mergeSort(A[n
2, ..., n])

7 return Merge(L, R)

8 end

1

http://stanford.edu/~rezab/dao

Last lecture, we described one way where we can take our traditional merge operation and

translate it into a parallelMerge routine with work O(n log n) and depth O(log n). Recall that

to do this, we assign each of n processors a single element in one sorted array A and perform a

binary search on the other array B for where the index would belong; the rank of the element in

the output array is simply the sum rankA(x) + rankB(x). Unfortunately, this leads our MergeSort

routine to require work W (n) = O(n log2 n), albeit at a better depth of D(n) = O(log2 n). This is

bothersome since by Brent’s theorem, we still have T1 showing up in the upper bound, hence we

won’t want to increase work for our algorithms in general.

We also started to describe a way in which if we have two sorted arrays in memory, and the

largest element of one array is less than the smallest element of the other, then we may simply

append the arrays together to yield a sorted output. This led to Richard Cole’s 1988 paper, which

achieves W (n) = O(n log n) and D(n) = O(log n).[2] The way Cole was able to do this was by

modifying his routine to return more information than just a sort alone. So, some of the work of

the Merge routine was being performed in the mergeSort routine itself.

Parallel Algorithms and (Seemingly) Trivial Operations

We assume that we can allocate memory in constant time, as long as we don’t ask for the memory

to have special values in it. That is, we can request a large chunk of memory (filled with garbage

bit sequences) in constant time; if we wish to get an array of zeros, that requires Θ(n) work since

we must ensure the integrity of each entry.

We have to be extremely careful when analyzing work and depth for parallel algorithms. Even

the most trivial operations must be dealt with care. For example, even an operation as trivial as

concatenate, i.e. in the case where we wish to concatenate two arrays together. Suppose we have

two arrays A,B each of length n. If A and B are located in two different places in RAM then we

might have a problem. The usual way to deal with these things is to allocate the output array which

costs constant time regardless of input size. Then, if we wish to concatenate two arrays into our

output, we simply give one thread half the array and the other thread the other half of the array

memory. When both threads are done, it’s as though we have already performed a concatenate

operation for free.

If allowed each thread to return its own array in the usual manner, we can still concatenate the

two with D(n) = O(1). To do this, we simply assign each processor one element to be copied or

moved in RAM and perform the n operations in parallel. Hence depth is constant. However, we

still need to perform O(n) work in this case.

General Divide and Conquer Technique

Many divide and conquer algorithms are actually quite formulaic. We go over the general method.

1. Come up with recursive formulation of the problem.

2. Count the following:

2

• Let a denote the number of recursive calls the function makes.

• Let b denote the integer such that the recursive calls accept input of size n/b.

3. Determine the amount of work T1 = w and depth T∞ = t is required by procedures outside

of any recursive calls; i.e. what is required of our combine step?

4. Write down the recurrence relations for the whole algorithm, which may be solved using the

Master Theorem.1

T1 = W (n) = aW
(n
b

)
+ w

T∞ = D(n) = D
(n
b

)
+ t

Part of the beauty in the divide and conquer method is that with respect to depth, it doesn’t

matter how many recursive calls we end up making. Since the recursive calls are independent,

when we add them to our computational DAG, we do not incur more than one unit of depth.

Generally speaking, coming up with the recursive formulation takes the most creativity. The

rest of the steps are more formulaic. It’s not trivial to realize that to sort a bunch of numbers, you

need to sort the left hand side and the right hand side and then merge the results back together.

Many parallel algorithms, such as finding the convex hull of a bunch of points in 2D, are best solved

using divide and conquer. Realizing that you even should be using divide and conquer takes a little

bit of creativity.

As far as this class is concerned the hardest part is coming up with a combine step which is

“cheap”, i.e. does not require much work/depth. We’re going to practice this creativity as we think

about the next problem: parallel quick selection.

Parallel Selection

Suppose we have a list of unsorted integers, which we know nothing about. We wish to find the kth

largest element of the integers. We can use quick selection to accomplish this task in linear time

without having to sort the entire list.[1] Manuel Blum proved this result in 1971 and was awarded a

Turing Award for it. Incidentally, he was actually trying to prove that you need to sort to be able

to do arbitrary selection. Quick selection is a randomized algorithm, so all run times presented will

be on an expected basis.

We will solve this algorithm using Divide and Conquer. This will be the first randomized

algorithm (and hence run time is expected) that we have seen in this class. We assume that our

input array A has unique elements.2

1 It’s also worth mentioning that unrolling recurrences by hand is not that difficult. If you ever forget which case

of the Master Theorem to use, you should be able to figure it out from scratch without much trouble.
2 If the elements are not unique, then we can simply omit the duplicate elements from the recursive calls.

3

3.1 Idea

We summarize the algorithm in words. From the input list, A, pick a value at random called a

pivot, p. For each item in A, put item into one of two sublists L and R such that:

x ∈ L ⇐⇒ x < p

y ∈ R ⇐⇒ y > p

We do not require L and R to be sorted. We can do this in linear time since it only requires passing

through each element in A and performing a constant time check whether the element is greater or

less than our pivot p.

AAAAAAAAAAA
`i `j . . . p

L R

Figure 1: After re-arranging, all elements in L (such as `i, `j) are less than the pivot p. All elements

in R are greater than the pivot p.

Crucial Realization Notice that the rank of p is exactly |L|. To find the kth largest element in

A, call it z, note the following:

If |L| < k, then z /∈ L. We discard the values in L.

If |L| > k, then z /∈ R. We discard the values in R.

We elaborate on why if |L| < k, then z /∈ L. This is because for any element l ∈ L, its sorted

order must be less than p’s order. But p’s order is equal to |L|+ 1, so z ∈ L would imply k < |L|,
which is a contradiction. By similar logic we can argue if |L| > k, then z /∈ R.

We then recursively perform the selection algorithm on the not discarded list, which reduces

our problem size. Specifically, we prove that with probability 1/2, we reduce our problem size by

at least 3/4. That will then be enough to guarantee expected linear time work.

Intuition for Analysis Since Select makes a chain of recursive calls, let us group multiple calls

together into one “phase” of the algorithm. The sum of the work done by all calls is then equal to

the sum of the work done by all phases of the algorithm. Concretely, let us define one “phase” of

the algorithm to be when the algorithm decreases the size of the input array to 3/4 of the original

size or less.

Why 3/4? Notice that if we can shrink the size of the array by a constant factor each iteration

while only performing linear work per iteration, then using the Master Theorem we know that total

work done would be linear. Further, picking any pivot in the “middle” half of the array means that

after re-arranging elements into L and R, at least 1/4 of the array values are less than the pivot

and at least 1/4 of the array values are larger than the pivot.

4

http://web.stanford.edu/class/archive/cs/cs161/cs161.1138/lectures/09/Small09.pdf

Algorithm 2: Select(A, k)

Input : Array A with n entries, integer k ≤ n

Output: Value of the kth largest element in A

1 p← a value selected uniformly at random from A // This is our pivot.

2 L← elements in A which are less than pivot p // Requires Θ(n) work

3 R← elements in A which are larger than pivot p

4 if |L| is k − 1 then

5 return p // The pivot itself is the kth largest element

6 end

7 if |L| > k then

8 return Select(L, k) // kth largest element lives in L

9 end

10 else

11 return Select(R, k-|L|-1) // kth largest element lives in R

12 end

...

Input A

Subset of A

Base case: 2 elements

Figure 2: Observe the computational DAG for our QuickSelect algorithm, which is serial in nature.

If we select any of these elements in red

as a pivot, then both L and R will have

size ≤ 3
4n.

1
4

3
4

Figure 3: Figure illustrates the region of the data where picking a pivot will result in both L and

R having sizes less than 3
4n.

So, we say that a phase in our algorithm ends as soon as we pick a pivot in the middle half of

5

our array, denoted by the red portion in the figure above. Recognize that in phase k, the array

size is at most n
(
3
4

)k
. The maximum number of phases before we can hit a base case is given by

dlog4/3 ne, since in each phase we dampen the size of the data by 3
4 .

3.2 Analysis - Expected Work

The analysis of this algorithm is as follows. Let us define the number of calls made to Select

when the size of the input array is of a particular size. That is, let Xk denote the number of times

Select called with array of input size between

n

(
3

4

)k+1

≤ |A| < n

(
3

4

)k

Total work is given by the sum of the work done for each Xk multiplied by the number of calls

of that size. Realize that total work done during phase k given by

Xk · cn
(

3

4

)k

for some constant c ∈ R+. Since in each phase, we reduce the input size by at least 3/4, total

number of phases given by dlog4/3 ne. Let W be a random variable describing the total work done.

Then,

W ≤
dlog4/3 ne∑

k=0

(
Xk · cn

(
3

4

)k
)

= cn

dlog4/3 ne∑
k=0

(
Xk

(
3

4

)k
)
.

We’re interested in the expected amount of total work. Hence, we apply the expectation operator

to both sides (expectation is a monotone operator), and after applying linearity of expectation we

see that,

E[W] ≤ cn

dlog4/3 ne∑
k=0

E[Xk]

(
3

4

)k

.

We now analyze E[Xk]. Recall that

E[Xk] =
∞∑
i=0

i · Pr(Xk = i).

Claim: Xi is a Geometric Random Variable with parameter p = 1
2 , hence E[Xi] = 2.

Recall that we defined a phase as lasting until we reduce the input size by at least 3/4, Consider

our choice of pivot - if the selected pivot is between the 1st and 3rd quartiles of the data, then both L

and R will have size ≤ 3
4n. The probability of this occurrence is then 1

2 , so Xi must be a geometric

with parameter 1
2 . Put another way, since all pivot choices are independent, Pr(Xk = i) equals the

probability that the first i− 1 pivot choices were in the outer quartiles times the probability that

the ith pivot choice was in interquartile range, i.e.

Pr(Xk = i) =

(
1

2

)i−1
· 1

2
=

1

2i
.

6

https://en.wikipedia.org/wiki/Geometric_distribution

Hence,

E[Xk] =
∞∑
i=0

iPr(Xk = i) =
∞∑
i=0

i

2i
= 2.

That is, in expectation, we need to make two calls to Select before reducing our input size by

at least 3/4. Ultimately, we see that

E[W] ≤ cn

dlog4/3 ne∑
k=0

E[Xk]

(
3

4

)k

≤ 2cn
∞∑
k=0

(
3

4

)k

= 2cn · 1

1− 3/4
= 8cn = O(n).

where we’ve used the fact that
∑

k

(
3
4

)k
is a geometric series with constant value (no dependence

on n). We have derived expected total work to be O(n). This is in the sequential world. We note

that because our recursive calls are stochastic in this algorithm, we cannot use the Master Theorem.

So, by this analysis, in expectation,

T1 = O(n).

Applying Markov’s Inequality We may analyze our total work further by utilizing the Markov

Inequality. We can compute a bound on the probability that our total work exceeds a multiple of

our expected total work. For example, if we wanted to do analysis that our total work will exceed

5 times our expected work:

P (Total Work ≥ 5× E[Total Work]) ≤ E[Total Work]

5× E[Total Work]
=

1

5

This lets us say that we will only have do perform 5n work with probability at most 1/5. Call

this probability p = 1/5. We may run this algorithm as many times as we want. We can run our

algorithm 5c2n times. Each time, we have at probability at least 4/5 of finding our kth element

in linear time. The total amount of work required is the sum over however many times we have

to restart the process (potentially an infinite number of times) times the probability we have to

restart that many times. Each time we fail, we do 5cn = O(n) work. Hence

∞∑
r=1

(
4

5

)r

O(n) = O(n) · c = O(n).

That is, we can try an infinitude of times and yet still only expect to perform constant work.

3.3 Parallelizing our Select Algorithm

Note that there is only one recursive call to Select, so the recursive portion of this function is not

divide and conquer in nature. How can we make this algorithm run in parallel? It’s clear that each

step of the algorithm runs in constant time except for creating L and R, hence this is the step we

will focus on.

7

https://en.wikipedia.org/wiki/Geometric_series#Formula
https://en.wikipedia.org/wiki/Markov's_inequality#Proofs
https://en.wikipedia.org/wiki/Markov's_inequality#Proofs

How to Construct L and R with Small Depth? We seek to construct L and R in a smart

way. Naively, you may think that constructing an indicator list of which elements in A go into L

and R is enough, but scanning and retrieving a solution from this construction will require O(n)

work. We can actually construct these lists using PrefixSum, which only takes O(log n) depth and

O(n) work still. We consider the following methodology to keep our depth low when constructing

L and R (notice that constructing R follows the same steps as constructing L):

Algorithm 3: Constructing L (or R)

1 Allocate and empty array of size n, with all values initially 0.

2 Construct indicator list BL[0, ..., n− 1], where bi = 1{ai < p}
3 Compute PrefixSum on BL // This requires O(log n) depth

4 Create the array L of size PrefixSum(BL)[n− 1]

5 for i = 1, 2, . . . , n do

6 L
[
PrefixSum(BL[i])

]
← a[i] // Can be done in parallel

7 end

In the first and fourth steps, we request a chunk of O(n) memory in constant time, i.e. we

perform O(n) work with unit depth. Also part of this first step, we use n processors and assign

each to initialize one element of the array to zero. In our second step, we construct our indicator

list BL which indicates whether an entry belongs in L, i.e. whether the entry less than p. This

requires O(n) work but only O(1) depth. Notice that only after completing step 3 do we know how

much space to allocate for L (or R), since the value of the last entry in our prefix sum array tells us

how many elements belong to L. This third step requires O(n) work and O(log n) depth. Lastly,

we fill in the entries of array L with O(n) work and O(1) depth.

Hence, our algorithm to construct L or R requires O(n) work and O(log n) depth. So, if we use

this (parallel) sub-routine within our Select algorithm, the recurrence for depth becomes

D(n) = D

(
n

4/3

)
+ O(log n) =⇒ D(n) = O(log2 n).

We remark that since our new method for constructing L and R did not require any additional

work, our recurrence for work remains the same.

Example Suppose

A =
[
1 16 3 2 5

]
We randomly select a pivot, suppose we select p ← 5. This takes O(1) work. We assign each

element to a single processor, and if the element is strictly smaller than the pivot, we overwrite its

corresponding bit in BL with a 1,

BL =
[
1 0 1 1 0

]

8

This takes Θ(n) work, but since we perform operations in parallel it requires O(1) depth. Now, we

compute the prefix-sum on BL, which gives us[
1 1 2 3 3

]
i.e. we now know that since BL has bits turned on in the first, third, and fourth positions, and

since the first, third, and fourth elements in the resulting prefix-sum output have values 1, 2, 3,

this tells us where to place each element in L. Computing prefix-sum takes O(n) work and O(log n)

depth.

Parallel Quick Sort

Parallel quick sort is very similar to parallel selection. We randomly pick a pivot and sort the

input list into two sublists based on their order relationship with the pivot. However, instead of

discarding one sublist, we continue this process recursively until the entire list has been sorted.

The pseudocode for this algorithm is as follows:

Algorithm 4: Quicksort(A)

Input : A

Output: sorted A

1 Let p be random uniformly selected from A

2 L = Elements of A < p

3 R = Elements of A > p

4 return
[

QuickSort(L), p, QuickSort(R)
]

The analysis for this algorithm is performed in the next lecture.

References

[1] M. Blum, Linear time bounds for median computations, (1971).

[2] R. Cole, Parallel merge sort, SIAM J. Comput., 17 (1988), pp. 770–785.

9

	3.1 Idea
	3.2 Analysis - Expected Work
	3.3 Parallelizing our Select Algorithm

