

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction First Pass DIMSUM Analysis Experiments Spark **Covariance Matrices & All-pairs Similarity**

Reza Zadeh

databricks^{*}

April 2015, Stanford DAO

Reza Zadeh (Stanford)

Covariance Matrices and All-pairs similarity

(Stanford Notation for matrix A

Covariance Matrices and All-pairs similarity

Introduction

• Given $m \times n$ matrix A, with $m \gg n$.

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}$$

- A is tall and skinny, example values $m = 10^{12}, n = \{10^4, 10^6\}.$
- A has sparse *rows*, each row has at most *L* nonzeros.
- *A* is stored across hundreds of machines and cannot be streamed through a single machine.

③ Stanford	Computing $A^T A$
Covariance Matrices and All-pairs similarity Reza Zadeh Introduction First Pass DIMSUM Analysis Experiments Spark More Results	 We compute A^TA. A^TA is n × n, considerably smaller than A. A^TA is dense. Holds dot products between all pairs of columns of A.

Guarantees

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction First Pass

Analysis

Experimer

Spark

More Results

There is a knob γ which can be turned to preserve similarities and singular values. Paying $O(nL\gamma)$ communication cost and $O(\gamma)$ computation cost.

- With a low setting of γ, preserve similar entries of A^TA (via Cosine, Dice, Overlap, and Jaccard similarity).
- With a high setting of γ, preserve singular values of A^TA.

Stanford Computing All Pairs of Cosine Similarities

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction

First Pase

DIMSUM

Analysis

Experiment

Spark

More Results

- We have to find dot products between all pairs of columns of *A*
- We prove results for general matrices, but can do better for those entries with cos(*i*, *j*) ≥ *s*
- Cosine similarity: a widely used definition for "similarity" between two vectors

$$\cos(i,j) = \frac{c_i^T c_j}{||c_i||||c_j||}$$

• c_i is the *i'th* column of A

() Stanford	Example matrix
Covariance Matrices and All-pairs similarity Reza Zadeh	
Introduction	Rows: users.
First Pass	Columns: movies.
DIMSUM	
Analysis	NETFLIX
Experiments	Netflix Prize
Spark	Netflix Prize
More Results	

(Stanford Distributed Computing Environment

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction

First Pass

DIMSUN

Analysis

Experimen

Spark

- With such large datasets, we must use many machines.
- Algorithm code available in Spark and Scalding.
- Described with Maps and Reduces so that the framework takes care of distributing the computation.

🚯 Stanford	Naive Implementation				
Covariance Matrices and All-pairs similarity Reza Zadeh	 Given row r_i, Map with NaiveMapper (Algorithm 1) Reduce using the NaiveReducer (Algorithm 2) 				
Introduction	Algorithm 1 NaiveMapper (r)				
First Pass	Algorithm 1 NaiveMapper(<i>r_i</i>)				
DIMSUM	for all pairs (a_{ij}, a_{ik}) in r_i do				
Analysis	Emit $((j,k) \rightarrow a_{ij}a_{ik})$				
Experiments	end for				
Spark					
More Results					
	Algorithm 2 $\operatorname{Naivo} \operatorname{Poducor}((i, i), (y, y, y))$				
	Algorithm 2 NaiveReducer $((i, j), \langle v_1, \ldots, v_R \rangle)$				
	$T \to B$				

output $c_i^T c_j \rightarrow \sum_{i=1}^R v_i$

Stanford Analysis for First Pass

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction

First Pass

DIMSUN

Analysis

Experiment

Spark

- Very easy analysis
- 1) Shuffle size: $O(mL^2)$
- 2) Largest reduce-key: O(m)
- Both depend on *m*, the larger dimension, and are intractable for $m = 10^{12}$, L = 100.
- We'll bring both down via clever sampling
- Assuming column norms are known or estimates available

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introductior

First Pass

DIMSUM

Analysis Experimer Spark

More Results

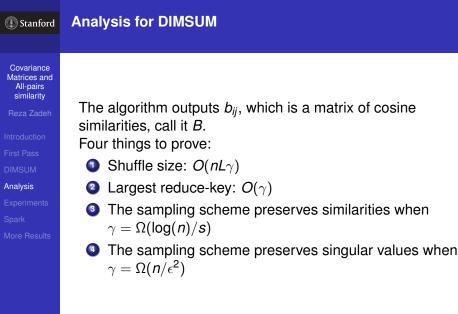
Algorithm 3 DIMSUMMapper(r_i)

for all pairs
$$(a_{ij}, a_{ik})$$
 in r_i do
With probability min $\left(1, \gamma \frac{1}{||c_j||||c_k||}\right)$
emit $((j, k) \rightarrow a_{ij}a_{ik})$
end for

Algorithm 4 DIMSUMReducer($(i, j), \langle v_1, \dots, v_R \rangle$)

if
$$\frac{\gamma}{||c_i|||c_j||} > 1$$
 then
output $b_{ij} \rightarrow \frac{1}{||c_i|||c_j||} \sum_{i=1}^{R} v_i$
else
output $b_{ij} \rightarrow \frac{1}{\gamma} \sum_{i=1}^{R} v_i$
end if

Reza Zadeh (Stanford)



() Stanford

Shuffle size for DIMSUM

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction

First Pass

DIMSUM

Analysis

Experimen

Spark

More Results

Theorem

For $\{0,1\}$ matrices, the expected shuffle size for DIMSUMMapper is $O(nL\gamma)$.

Proof.

The expected contribution from each pair of columns will constitute the shuffle size:

$$\sum_{i=1}^{n} \sum_{j=i+1}^{n} \sum_{k=1}^{\#(c_i, c_j)} \Pr[\text{DIMSUMEmit}(c_i, c_j)]$$

 $=\sum_{i=1}^{n}\sum_{j=i+1}^{n}\#(c_i,c_j)\Pr[\mathsf{DIMSUMEmit}(c_i,c_j)]$

Shuffle size for DIMSUM 🚯 Stanford Covariance Proof. Matrices and All-pairs $\leq \sum_{i=1}^n \sum_{j=i+1}^n \gamma \frac{\#(\boldsymbol{c}_i, \boldsymbol{c}_j)}{\sqrt{\#(\boldsymbol{c}_i)}\sqrt{\#(\boldsymbol{c}_j)}}$ similarity Analysis

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introductio

First Pas

DIMSUM

Analysis

Experiment

Spark

More Results

Proof.

$$\leq \sum_{i=1}^{n} \sum_{j=i+1}^{n} \gamma \frac{\#(\boldsymbol{c}_i, \boldsymbol{c}_j)}{\sqrt{\#(\boldsymbol{c}_i)}\sqrt{\#(\boldsymbol{c}_j)}}$$

by AM-GM)
$$\leq rac{\gamma}{2} \sum_{i=1}^{''} \sum_{j=i+1}^{''} \#(c_i, c_j) (rac{1}{\#(c_i)} + rac{1}{\#(c_j)})$$

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introductio

First Pas

DIMSUM

Analysis

Experiment

Spark

More Results

Proof.

$$\leq \sum_{i=1}^{n} \sum_{j=i+1}^{n} \gamma \frac{\#(c_i, c_j)}{\sqrt{\#(c_i)}\sqrt{\#(c_j)}}$$

by AM-GM) $\leq \frac{\gamma}{2} \sum_{i=1}^{n} \sum_{j=i+1}^{n} \#(c_i, c_j)(\frac{1}{\#(c_i)} + \frac{1}{\#(c_j)})$
 $\leq \gamma \sum_{i=1}^{n} \frac{1}{\#(c_i)} \sum_{j=1}^{n} \#(c_i, c_j)$

Reza Zadeh (Stanford)

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introductio

First Pas

DIMSUM

Analysis

Experimen

Spark

More Results

Proof.

$$\leq \sum_{i=1}^{n} \sum_{j=i+1}^{n} \gamma \frac{\#(c_i, c_j)}{\sqrt{\#(c_i)}\sqrt{\#(c_j)}}$$

(by AM-GM)
$$\leq \frac{\gamma}{2} \sum_{i=1}^{N} \sum_{j=i+1}^{N} \#(c_i, c_j) (\frac{1}{\#(c_i)} + \frac{1}{\#(c_j)})$$

$$\leq \gamma \sum_{i=1}^n \frac{1}{\#(c_i)} \sum_{j=1}^n \#(c_i, c_j)$$

$$\leq \gamma \sum_{i=1}^{n} \frac{1}{\#(c_i)} L \#(c_i) = \gamma L n$$

Shuffle size for DIMSUM 🚯 Stanford Covariance Matrices and All-pairs similarity • $O(nL\gamma)$ has no dependence on the dimension *m*, this is the heart of DIMSUM. Happens because higher magnitude columns are sampled with lower probability: Analysis $\gamma \frac{\mathbf{I}}{||\mathbf{C}_1||||\mathbf{C}_2||}$

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introductior

First Pass

DIMSUM

Analysis

Experiment

Spark

- For matrices with real entries, we can still get a bound
- Let *H* be the smallest nonzero entry in magnitude, after all entries of *A* have been scaled to be in [-1, 1]
- E.g. for $\{0, 1\}$ matrices, we have H = 1
- Shuffle size is bounded by $O(nL\gamma/H^2)$

(Stanford Largest reduce key for DIMSUM

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction

First Pass

DIMSUM

Analysis

Experiments

Spark

- Each reduce key receives at most γ values (the oversampling parameter)
- Immediately get that reduce-key complexity is $O(\gamma)$
- Also independent of dimension *m*. Happens because high magnitude columns are sampled with lower probability.

Correctness

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introductior

First Pass

DIMSUM

Analysis

Experiment

Spark

- Since higher magnitude columns are sampled with lower probability, are we guaranteed to obtain correct results w.h.p.?
 - Yes. By setting γ correctly.
 - Preserve similarities when $\gamma = \Omega(\log(n)/s)$
- Preserve singular values when $\gamma = \Omega(n/\epsilon^2)$

Correctness

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction First Pass DIMSUM Analysis

Spark

More Results

Theorem

Let A be an $m \times n$ tall and skinny (m > n) matrix. If $\gamma = \Omega(n/\epsilon^2)$ and D a diagonal matrix with entries $d_{ii} = ||c_i||$, then the matrix B output by DIMSUM satisfies,

$$\frac{|DBD - A^T A||_2}{||A^T A||_2} \le \epsilon$$

with probability at least 1/2.

Relative error guaranteed to be low with constant probability.

() Stanford	Proof
Covariance Matrices and All-pairs similarity	
Reza Zadeh	
Introduction	
First Pass	Uses Latala's theorem, bounds 2nd and 4th central
DIMSUM	moments of entries of <i>B</i> .
Analysis	
Experiments	Really need extra power of moments.
Spark	
More Results	

Latala's Theorem

Theorem

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction First Pass DIMSUM Analysis

Experime

Spark

More Results

(Latala's theorem). Let X be a random matrix whose entries x_{ij} are independent centered random variables with finite fourth moment. Denoting $||X||_2$ as the matrix spectral norm, we have

$$\mathbb{E} ||X||_2 \le C[\max_i \left(\sum_j \mathbb{E} x_{ij}^2\right)^{1/2} + \max_j \left(\sum_i \mathbb{E} x_{ij}^2\right)^{1/2} \\ + \left(\sum_{i,j} \mathbb{E} x_{ij}^4\right)^{1/4}].$$

() Stanford	Proof
Covariance Matrices and All-pairs similarity Reza Zadeh Introduction First Pass DIMSUM Analysis Experiments Spark More Results	Prove two things • $\mathbb{E}[(b_{ij} - Eb_{ij})^2] \leq \frac{1}{\gamma}$ (easy) • $\mathbb{E}[(b_{ij} - Eb_{ij})^4] \leq \frac{2}{\gamma^2}$ (not easy) Details in paper.

Correctness

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction First Pass DIMSUM Analysis

Experimen

Spark

More Results

Theorem

For any two columns c_i and c_j having $\cos(c_i, c_j) \ge s$, let B be the output of DIMSUM with entries $b_{ij} = \frac{1}{\gamma} \sum_{k=1}^{m} X_{ijk}$ with X_{ijk} as the indicator for the k'th coin in the call to DIMSUMMapper. Now if $\gamma = \Omega(\alpha/s)$, then we have,

$$\mathsf{Pr}\left[||\boldsymbol{c}_i|||\boldsymbol{c}_j||\boldsymbol{b}_{ij}>(1+\delta)[\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A}]_{ij}\right] \leq \left(\frac{\boldsymbol{e}^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\alpha}$$

and

$$\Pr\left[||\boldsymbol{c}_i|||\boldsymbol{c}_j||\boldsymbol{b}_{i,j} < (1-\delta)[\boldsymbol{A}^T\boldsymbol{A}]_{ij}\right] < \exp(-\alpha\delta^2/2)$$

Relative error guaranteed to be low with high probability.

Reza Zadeh (Stanford)

Correctness

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introduction

First Pass

DIMSUM

Analysis

Experimen

Spark

More Results

Proof.

- In the paper
- Uses standard concentration inequality for sums of indicator random variables.
- Ends up requiring that the oversampling parameter γ be set to γ = log(n²)/s = 2 log(n)/s.

Observations

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introductior

First Pass

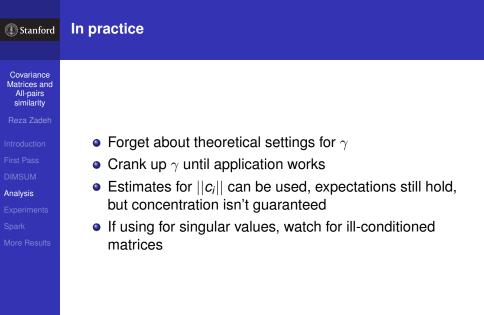
DIMSUM

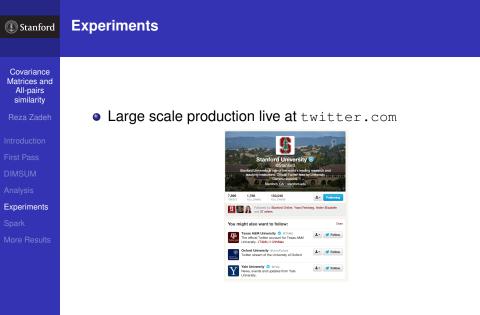
Analysis

Experiment

Spark

- DIMSUM helpful when there are some popular columns
- e.g. The Netflix Matrix (some columns way more popular than others)
- Power-law columns are effectively neutralized





Reza Zadeh (Stanford)

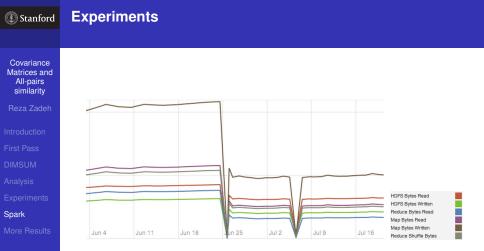


Figure : Y-axis ranges from 0 to 100s of terabytes

Implementation (1) Stanford Covariance Matrices and // Load and parse the data file. All-pairs similarity val rows = sc.textFile(filename).map { line => val values = line.split(' ').map(.toDouble) Vectors.dense(values) } val mat = new RowMatrix(rows) // Compute similar columns perfectly, with brute force. val simsPerfect = mat.columnSimilarities() Spark

// Compute similar columns with estimation using DIMSUM
val simsEstimate = mat.columnSimilarities(threshold)

Figure : Widely distributed with Spark as of version 1.2

Other Similarity Measures

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introductior First Pass DIMSUM

_ 1

Spark

More Results

Picking out similar columns work for some other similarity measures.

Similarity	Definition	Shuffle Size	Reduce-key size
Cosine	$\frac{\#(x,y)}{\sqrt{\#(x)}\sqrt{\#(y)}}$	$O(nL\log(n)/s)$	$O(\log(n)/s)$
Jaccard	$\frac{\#(x,y)}{\#(x)+\#(y)-\#(x,y)}$	$O((n/s)\log(n/s))$	$O(\log(n/s)/s)$
Overlap	$\frac{\#(x,y)}{\min(\#(x),\#(y))}$	$O(nL\log(n)/s)$	$O(\log(n)/s)$
Dice	$\frac{2\#(x,y)}{\#(x)+\#(y)}$	$O(nL\log(n)/s)$	$O(\log(n)/s)$

 Table : All sizes are independent of *m*, the dimension.

Stanford Locality Sensitive Hashing

Covariance Matrices and All-pairs similarity

Reza Zadeh

First Pass DIMSUM

Analysis

Experiment

Spark

More Results

- MinHash from the Locality-Sensitive-Hashing family can have its vanilla implementation greatly improved by DIMSUM.
- Another set of theorems for shuffle size and correctness in DISCO paper.

stanford.edu/~rezab/papers/disco.pdf

Conclusion

Covariance Matrices and All-pairs similarity

Reza Zadeh

Introductior First Pass

DIMSUM

Analysis

Experiment

Spark

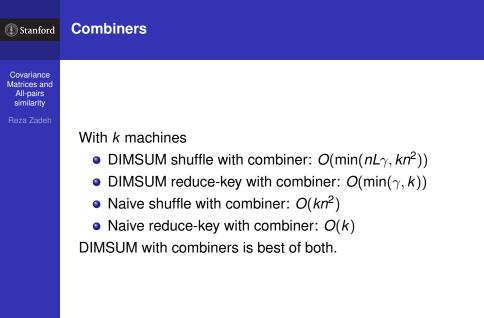
- Consider DIMSUM if you ever need to compute *A^TA* for large sparse *A*
- Many more experiments and results in paper at stanford.edu/~rezab

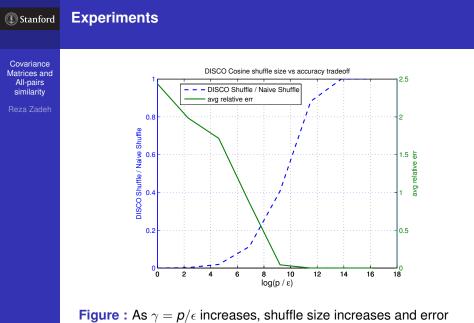
Combiners

Covariance Matrices and All-pairs similarity

Reza Zadeh

- All bounds are without combining: can only get better with combining
- For similarities, DIMSUM (without combiners) beats naive with combining outright
- For singular values, DIMSUM (without combiners) beats naive with combining if the number of machines is large (e.g. 1000)
- DIMSUM with combining empirically beats naive with combining
- Difficult to analyze combiners since they happen at many levels. Optimizations break models.
- DIMSUM with combiners is best of both.





decreases. There is no thresholding for highly similar pairs here.

Reza Zadeh (Stanford)

Covariance Matrices and All-pairs similarity

April 2014 34 / 34