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Abstract 

We describe a distributed structural estimation approach for recovering graph 

edge-type weights that are revealed through orders generated by a specific 

type of influence propagation, Edge-Type Weighted PageRank.  Our 

implementation combines numerical gradient descent with PageRank 

iterations using the Pregel framework. 

1. Introduction 

Networks have received a tremendous amount of multidisciplinary interest in recent academic 

research,   largely due to the ability of online networks to facilitate transmissions at 

unprecedented scale and speed.   However, whether such networks are informational1, social2, 

or economic3, attention has typically focused on graphs with exactly one type of edge.  In this 

paper, we study graphs featuring multiple types of edges, with each type possibly having a 

different weight.  This is a more realistic approach for modeling many important networks in 

the real world which feature links of varying strength.  For example, one early famous social 

network paper by Granovetter (1973) contrasted weak ties (e.g. between people who interact 

less than once per year) with strong ties (e.g. between people who interact at least twice per 

week), which are thought to indicate quantitatively and/or qualitatively different types of 

social connections.  An emerging literature has begun to use data from online networks to 

predict tie strength, e.g. with tie strengths that are self-reported by human4.  In this paper, we 

                                                           
1 Brin and Page, 1998 
2 Kwak, Lee, Park, and Moon, 2010 
3 Elliott, Golub, and Jackson, 2014 
4 Gilbert and Karahalios, 2009 
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take a complementary approach and attempt to recover the tie strengths that are revealed via 

the propagation of actual influence along a network5. 

Our approach builds on PageRank, a popular algorithm for assessing the propagation of 

influence along a network6, and has three key elements.  First, we introduce Edge-Type 

Weighted Page Rank (EWPR), an extension of PageRank that allows for multiple edge types 

and possibly different edge-type weights. Second, we present algorithms (gradient descent 

and grid search) for finding the edge-type weight vector that best describes a given set of 

“influence” scores (e.g. such as those generated by EWPR itself with a particular set of 

weights) under the maintained hypothesis that influence operates as if characterized by EWPR 

with known edge types.  (EWPR should not be confused with the “Weighted Page Rank” 

algorithm proposed by Xing and Ghorbani (2004), which proposes a different extension of 

PageRank that uses weighting based on inlinks and outlinks.) This “structural” approach to 

recovering network parameters is widely used by economists,7 although to the best of our 

knowledge it has not yet been combined with PageRank-like algorithms from computer 

science.  Third, modern networks are often massive, and frequently have very large numbers 

of edges.  In such cases, a single-machine approach may be infeasible.  We demonstrate how 

to use the high-speed cluster programming framework Spark to implement our approach over 

a distributed cluster. 

Our approach has a wide range of potential applications.  Networks of individuals and firms 

are common in many financial markets8; in such networks, some links are “social” (e.g. 

following a person on Twitter with the goal of receiving interesting information about them) 

while others are “economic” (e.g. making a financial investment with the goal of receiving a 

profit from them).  Using our approach, an analyst could quantitatively assess the relative 

value of a social link vis-à-vis an economic link using only knowledge about the graph 

(including the edge types), and a given set of “influence” scores.  For example, the online 

platform AngelList matches angel investors with start-ups who are seeking capital; such start-

ups have subsequently raised over $2.9 billion in venture capital and exit money9 .  On 

AngelList, it is possible for an investor to follow a start-up (creating a social link), invest in a 

start-up (creating an economic link), or neither.  It seems plausible that an “invest” link might 

represent stronger influence than a “follow” link, but how much more is an open question.  A 

                                                           
5 For discussion on the relative strengths of self-reported versus revealed model primitives, see 

Beshears, Choi, Laibson, and Madrian, 2008 
6 Brin and Page, 1998 
7 e.g., Currarini, Jackson, and Pin, 2010 
8 Hochberg, Ljungqvist, and Lu, 2007 
9 Bernstein, Korteweg, and Laws, 2014 
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good answer to this question might help improve the design of systems in which people make 

financial decisions, i.e. organizations and markets. 

 

2. Model Formulation 

2.1 Structural Estimation - Weighted Graph 

First, we define an edge-type weighted graph as a weighted graph 𝐺 = (𝑉, 𝐸(𝑒, 𝑡), 𝜔) ∈ 𝒢𝑤, 

where 

𝑉 is the set of vertices with |𝑉| = 𝑛, 

𝐸 is the set of edges with |𝐸| = 𝑚, each edge 𝑒 having a type attribute 𝑡 ∈ 𝒯 = {1, 2, … , 𝑇} 

where 𝒯 is the set of possible edge types, and 

𝜔 = (𝜔1, … , 𝜔𝑇) ∈ ℝ+
T  is a weight vector that maps each edge type 𝑡 to a weight 𝜔𝑡, and 

hence assigns the weight of each edge through its edge-type. 

We define the structural estimation problem in the weighted graph context as follows. We are 

given the underlying graph, which includes the vertices, the edges, and the edge-type of each 

edge, but without information on the weight vector. We are also given a real-valued function 

𝑓:  𝒢𝑤 → ℝ that assigns a value to every weighted graph. The objective is to identify the set of 

weights ωopt  that generates the weighted graph with a desired output from 𝑓 . A frequent 

endeavour is to find the set of weights that obtain the minimum of 𝑓, i.e.,  

ωopt = argmin
𝜔

𝑓(𝐺(𝑉, 𝐸, 𝜔)) 

In the following sections, we consider the specific problem instance of choosing 𝑓as the 

distance between the ordering obtained from the weighted PageRank scores and some pre-

defined ordering. 

 

2.2 Weighted PageRank 

Before algorithms for finding the optimal weight vectors can be discussed, the process to 

calculate weighted PageRank scores for weighted graphs must be precisely outlined. For a 

edge-type weighted directed graph 𝐺 = (𝑉, 𝐸(𝑒, 𝑡), 𝜔), we define the weighted stochastic 
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adjacency matrix 𝐴 ∈ ℝ𝑛×𝑛 as: 𝐴𝑗𝑖 =
𝑤𝑖𝑗

∑ 𝑤𝑖𝑗𝑗
 , where 𝑤𝑖𝑗 = 𝜔𝑡𝑖𝑗

 is the weight for edge 𝑒𝑖𝑗 , if 

𝑒𝑖𝑗 ∈ 𝐸 (i.e. if 𝑣𝑖 → 𝑣𝑗), and 𝑤𝑖𝑗 = 0 if 𝑒𝑖𝑗 ∉ 𝐸.  

Alternatively, for 𝑡 = 1, 2, … , 𝑇 , let 𝐵(𝑡)  be the unnormalized adjacency matrix of 𝐺(𝑡) =

(𝑉, {(𝑒, 𝜏)|𝜏 = 𝑡}), the unweighted sub-graph of 𝐺 with edges only of type 𝑡. Then, it follows 

that 𝐴 = (𝜔1𝐵(1) + ⋯ + 𝜔𝑇𝐵(𝑇))𝐶 , where 𝐶  is a diagonal matrix that serves as the 

normalization factor, i.e. its diagonal entries take on values 𝐶𝑖𝑖 = ∑ 𝜔𝑡𝑡 (∑ [𝐵(𝑡)]
𝑖𝑗𝑗 ) . Using 

this representation provides insights into the mechanism under which altering the weight 

vector 𝜔 may influence the page rank scores. When all the weights have equal values, the 

weighted graph degenerates into a normal unweighted graph. 

Following the same framework as in the original PageRank paper by Brin and Page (1998), 

we are seeking a PageRank score vector 𝑟 ∈ ℝn such that 𝑟 = (1 − 𝛿)/𝑛 + 𝛿𝐴𝑟, where 𝛿 is 

the teleporting coefficient, commonly set to 0.85. Equivalently, 𝑟  is an eigenvector that 

corresponds to eigenvalue 𝜆 = 1  for the matrix 𝑀 = 𝛿𝐴 +
1−𝛿

𝑛
𝟙 , where 𝟙 ∈ ℝ𝑛×𝑛  is the 

matrix of all 1’s. Because 𝑀 is also a left stochastic matrix, by the Perron–Frobenius theorem, 

𝜆 = 1 is the unique largest eigenvalue of 𝑀. On this basis, it is justified to apply the power 

iteration on 𝑀 to calculate the stationary probability vector, 𝑟. 

 

2.3 Formal Statement 

For any given set of weights 𝜔, we desire to calculate how the PageRank scores obtained 

from this set of weights differs from the true PageRank scores obtained from the real weights 

𝜔∗. Ideally, we would establish a distance function between two PageRank scores, ℎ∗(𝑟1, 𝑟2), 

and let 𝑓(𝐺(𝑉, 𝐸, 𝜔∗)) = ℎ∗(𝑃𝑅(𝐺(𝑉, 𝐸, 𝜔)), 𝑟∗)  where 𝑃𝑅: 𝒢w → ℝ𝑛  gives the weighted 

PageRank scores of a graph.  

However, in reality, because 𝜔∗ are unknown, we may also not be able to observe the real 

PageRank scores 𝑟∗. Hence, we assume that it is possible to observe some ordering of the 

vertices that represents the ordering of the PageRanks scores with some Gaussian noise. 

Namely, we observe a vector 𝑝∗ = 𝑜𝑟𝑑𝑒𝑟(𝑟∗ + 𝜂), where 𝜂 ~ 𝒩(0, σϵ
2𝐼). We assume that σϵ

2 

is small compared to sr∗
2 , the sample variance of the PageRank score values. (In Section 4 

Simulations, we choose σϵ
2/sr∗

2  to be 0.1 and 0.2). 
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We define a distance metric ℎ(𝑝1, 𝑝2),  𝑝1, 𝑝2 ∈ 𝒫 ⊂ ℕ𝑛, on the ordering space 𝒫 = the set of 

all permutations of (1, 2, … , 𝑛). A possible choice of ℎ is the Spearman’s rank correlation 

distance. Another possibility is the L2-distance, given by 

ℎ(𝑝1, 𝑝2) = (∑ ((𝑝1)𝑖 − (𝑝2)𝑖)
2

𝑛

𝑖=1
)

1/2

 

Given an edge-typed graph 𝐺(𝑉, 𝐸, 𝜔∗) (where 𝜔∗  is unknown) and some observed vertex 

ordering, 𝑝∗, we wish to find the optimal vector 𝜔𝑜𝑝𝑡 that minimizes the distance in ordering 

between that obtained from the weighted PageRank scores of 𝐺(𝑉, 𝐸, 𝜔) and 𝑝∗. Using the 

Euclidean distance function, the edge-type weighted PageRank structural estimation problem 

becomes, given 𝐺(𝑉, 𝐸(𝑒, 𝑡), 𝜔∗) (where 𝜔∗ is unknown) and an observed 𝑝∗, find: 

ωopt = argmin
𝜔

 ‖𝑜𝑟𝑑𝑒𝑟 (𝑃𝑅(𝐺(𝑉, 𝐸, 𝜔))) − (𝑝∗)‖
2
 

It is not immediately obvious the relationship between 𝜔𝑜𝑝𝑡  and 𝜔∗ . However, the robust 

eigenvector theorem for stochastic matrices by Juditsky and Polyak (2012), when applied on 

𝜔∗, suggests that 𝜔𝑜𝑝𝑡
∗  will be in some sense close to 𝜔∗. Section 4 especially considers this 

issue and runs simulations—the results are in favour of the closeness between 𝜔𝑜𝑝𝑡
∗  and 𝜔∗. 

 

3. Methodology 

Since the structural estimation problem fixes the underlying structure of the graph, with 

perhaps a slight abuse of notation, we can consider 𝑓(𝐺(𝑉, 𝐸(𝑒, 𝑡), 𝜔) as instead a function 

𝑓(𝜔):  ℝ𝑇 → ℝ that only takes a weight vector 𝜔 ∈ ℝ𝑇 as input. Hence, we can thus discuss 

the gradient of 𝑓 with respect to the weight vector 𝜔. 

However, it seems intractable to conduct a closed-form analysis of the gradient. This is 

because a change in weights results in a different linear combination of {𝐵(𝑡)}
𝑡=1,… ,𝑇

, which  

modifies the matrix 𝑀 and hence 𝑟𝜔, the eigenvector that corresponds to its largest eigenvalue 

𝜆1 = 1. Because there is no intrinsic link on how modifying the matrix will change the 

orderings of the entries of its eigenvectors, it is sensible to resort to numerical methods in 

order to find the optimal weight vector 𝜔opt.  

 

3.1 Single Machine Weighted PageRank 
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The consequence of having to resort to numerical methods is evident: a full weighted 

PageRank algorithm must be carried out each time the function 𝑓 is evaluated at a different 

weight 𝜔 . This implies that any optimization effort to enhance the weighted PageRank 

algorithm will generate significant improvements.  

The naïve approach is to follow the power method by iteratively applying the matrix 𝑀 to 

some initial vector 𝑣 ∈ ℝ𝑁  until at some step 𝑘, 𝑀𝑘𝜈 is close to 𝑀𝑘−1𝜈. Since we do not 

require exact PageRank scores, a more lenient criterion of “closeness” can be chosen as long 

as it reasonably ensures that the ordering of the entries of the resulting vector is unlikely to 

change significantly with further multiplications by 𝑀.  

For this method, each multiplication requires (2𝑛 − 1)𝑛  flops, which is 𝒪(𝑛2). The total 

number of iterations requires an analysis of the eigendecomposition of the matrix 𝑀. Provided 

below is a brief analysis for the case when 𝑀 is diagonalizable. Similar proof exists for a 

general 𝑀 by considering the Jordan form. 

Suppose 𝑀 = 𝑄𝛬𝑄−1  is its eigendecomposition, with 𝛬 = 𝑑𝑖𝑎𝑔(𝜆1, … , 𝜆𝑛)  and 𝑄 =

[𝑞1|… |𝑞𝑛] . We have 𝜆1 ≥ ⋯ ≥ 𝜆𝑛  as the eigenvalues of 𝑀  and 𝑞𝑖  is the eigenvector 

corresponding to eigenvalue 𝜆𝑖. Then, in our case, 𝜆1 = 1 and 𝑞1 = 𝑟. Suppose 𝑣 = ∑ 𝑐𝑖𝑞𝑖𝑖  is 

chosen randomly, then we have ℙ(c1 ≠ 0) = 1 and  

𝑀𝑘𝑣 = 𝑐1(𝑟 +
𝑐2

𝑐1

(𝜆2)𝑘𝑞2 + ⋯ +
𝑐𝑛

𝑐1

(𝜆𝑛)𝑘𝑞𝑛 

This means that the convergence rate, and hence the number of iterations, depends mostly on 

λ2, and the convergence is geometric in the number of iterations 𝑘. Specifically, for an error 

tolerance 𝜖 defined as distance measured by some norm on the vector space ℝ𝑁, the number 

of iterations 𝐾 needed to let the vector converge is 

𝒪 (
log(1/𝜖) − 𝑐𝑐2/𝑐1 

log(1/𝜆2)
 ) ~𝒪 (

log(1/𝜖)

log(1/𝛿)
 ) ~𝒪(log(1/𝜖)) 

In the above complexity analysis, we used the result from Haveliwala and Kamvar’s theorem 

(2003) in the Second Eigenvalue of Google Matrix Theorem, whereby it is shown that |𝜆2| ≤

𝛿 . Hence, using the teleporting method (where typically 𝛿  is chosen to be 0.85) helps 

additionally in preventing a degeneratively slow convergence by disallowing 𝜆2  to go 

arbitrarily close to 1 (which would have resulted in slow convergence due to log(1/𝜆2) → 0+. 

Also note that an effort spent to choose a smart starting vector 𝑣 by minimizing the ratio 
c2

c1
 is 
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rewarded minimally. Since 𝜆2  is out of our control, we will from here on refer to 𝐾  as 

𝒪(log(1/𝜖)). 

If A is a sparse matrix (which is usually the case for large graphs generated in real-life 

situations), we can improve the time complexity for each iteration within the PageRank 

multiplication. Instead of directly applying 𝑀 , we update the vector using the original 

teleporting equation 𝑣(𝑘) = (1 − 𝛿)/𝑛 + 𝛿𝐴𝑣(𝑘−1). Suppose |𝐸| = 𝑚 (i.e. 𝐴 has 𝑚 non-zero 

entries), then the multiplication requires 2𝑚 − 𝑛 flops, which is 𝒪(𝑚) assuming 𝑚 ≫ 𝑛. 

 

3.2 Distributed Weighted PageRank – Pregel Framework 

The Pregel implementation of PageRank proceeds as follows. In each superstep, each vertex 

updates its own value with a weighted sum of its neighbors’ PageRanks, using received 

incoming messages.  Then, each vertex sends an equal amount of its updated PageRank to 

each neighbor vertex, generating outgoing messages.  This process repeats until convergence. 

 

(image source: CME 323: Distributed Algorithms and Optimization, Lecture 8, Reza Zadeh, 

Stanford University)  

Suppose we have 𝐵 machines with combiners. For each superstep, the number of messages 

sent is first upper-bounded by the total number of edges in the graph. Because with combiners, 

we first sum up the values corresponding to each key on each local machine before sending 

out the messages, the number of messages sent by each local machine is further upper-

bounded by 𝑛. Hence the total communication cost for each superstep, which is the total 

number of messages sent, is min (𝑚, 𝑛𝐵).  
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In runtime, early supersteps will have a messageRDD size close to 𝑚, but as the number of 

steps increase, more vertices will VoteToHalt() and hence fewer and fewer messages will be 

sent as the vector 𝑣(𝑘)  approaches 𝑟 . If we partition the graph by edges, we have each 

machine produce 𝒪(𝑚/𝐵) computations and sends out 𝒪(min(𝑚/𝐵, 𝑛)) messages. 

The reduce size for each key is first upper-bounded by the maximum in-degree of the vertices 

in the graph. In extreme cases (such as a star graph), we can have the maximum in-degree of 

vertices in the order of 𝒪(𝑚). However, if the graph is somewhat regular, we can expect the 

average reduce size is 𝒪(𝑚/𝑛) . Further, the combiners help solve this curse of the last 

reducer problem for these extreme-case graphs. Because after combining, each vertex key will 

receive at most one message from each machine, the reduce size is further upper-bounded by 

𝐵. Hence, we have that the reduce size as 𝒪(min(𝑚/𝑛, 𝐵)). 

The analysis of number of iterations is analogous to that of weighted PageRank on a single 

machine, with one slight modification. Allowing the vertices to independently consider 

whether they will continue to update or halt implies that the actual calculated PageRank 

vector 𝑣(𝑘)  is slightly different than (1 − 𝛿)/𝑛 + 𝛿𝐴𝑣(𝑘−1) at every step. Having certain 

entries not updating with the rest of the vector will create a small 𝒪(ϵ) at each step that 

potentially raises slightly the number of iterations until all vertices converge. 

 

3.3 Single Machine Search Strategy 

3.3.1 Grid Search 

A simple search strategy is to perform a grid search on the entire weight space. In order for 

this to be feasible, we need to restrict the weights such that ‖ω‖1 = 1. Note that this is 

justifiable because for any weight vector ω ∈ ℝ+
T , we have f(ω) = f(ω/‖ω‖1)  because 

PR(ω) = PR(ω/‖ω‖1).  

This search strategy is comprehensive, and as we shall see in section 4, provides a robust 

algorithm that recovers the true weights under noisy signals with high confidence. However, 

the major disadvantage of the grid search is its computationally intensive requirement. The 

total number of weighted PageRanks needed grows polynomially with the mesh steps, and 

exponentially with the number of dimensions, 𝑇. For a grid with mesh size 0.01, any number 

of edge types above single digits becomes computationally infeasible. 
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Explicitly, given a grid with mesh size α, the total number of weighted PageRanks performed 

is (1/𝛼)𝑇, and hence the total time complexity is 𝒪((1/𝛼)𝑇𝑚 log(1/𝜖)). 

3.3.2 Numerical Gradient Descent 

The second proposed search strategy follows the gradient descent framework, with slight 

complication due to the lack of closed-form evaluation of the gradient. The basic gradient 

descent algorithm provides the update on the weight vector 𝜔(𝑙) as 

𝜔(𝑙+1) = 𝜔(𝑙) − 𝛾 ∇𝑓(𝜔(𝑙)) 

where ∇𝑓(𝜔(𝑙)) = [
𝜕𝑓

𝜕𝜔1
, … ,

𝜕𝑓

𝜕𝜔𝑇
]

𝜔=𝜔(𝑙)

𝑇

 is the gradient of the function 𝑓, and 𝛾 is the step size 

scaling factor chosen at each iteration 𝑙 . Note that to avoid confusion, 𝑙 enumerates the 

iteration in the search, each of which step gives a new weight vector after one or multiple 

PageRank algorithms. In contrast, 𝑘 enumerates the iteration number in a single step within 

one PageRank algorithm – which is called a superstep in the distributed setting.  

Because we cannot compute the closed-form of ∇𝑓  analytically, a numerical estimation 

approach appears appropriate. At each new point in the weight space, evaluating 𝑓 requires 

running a full weighted PageRank—𝒪(𝑚 log(1/𝜖))—and a sort over all the PageRank scores 

to compute the ordering—𝒪(𝑛 log 𝑛) using TimSort, for instance.  Hence, evaluating 𝑓 incurs 

𝒪(𝑚 log(1\𝜖) + 𝑛 log 𝑛) cost. 

To cut down computation costs, instead of using a central difference estimation method, we 

apply the forward difference method, obtaining 

𝜕𝑓

𝜕𝜔𝑡
(𝜔(𝑙)) =

𝑓(𝜔(𝑙) + 𝛼𝑒𝑡 − 𝛼𝑒𝑇) − 𝑓(𝜔(𝑙))

𝛼
 

where 𝑒𝑡 = [0, … ,1, … ,0] is the unit vector in the 𝑡 -th dimension. Due to the fact of the 

constraint ‖𝜔‖1 = 1, we slightly modify the original gradient descent equation by updating 

the first 𝑇 − 1  components of the weight vector according to the equation, and the last 

component by  𝜔𝑇
(𝑙+1)

= 1 − ∑ 𝜔𝑡
(𝑙+1)𝑇−1

𝑡=1 . The forward difference method requires 𝑇 

PageRank computations, once for evaluation of 𝑓 at the current weights and 𝑇 − 1 times to 

calculate the 𝑇 − 1 partial derivatives. 
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Hence, for one gradient descent to converge, the computation cost is 𝒪(𝑇(𝑚 log(1/𝜖) +

𝑛 log 𝑛)𝐿), where 𝐿 is the total number of steps for the gradient descent to reach a local 

minimum, which depends on the condition of the matrix 𝑀. For a strictly convex function, we 

will be done after one gradient descent. However, since our function 𝑓  is only piecewise 

convex (due to the discrete nature of orderings, as will be seen in section 4), retrieving the 

global minimum requires multiple runs of gradient descent with different initial guesses ω(0). 

Letting 𝑆 be the number of initializations we provide. Then the total computation cost is 

𝒪(𝑆𝑇(𝑚 log(1/𝜖) + 𝑛 log 𝑛)𝐿). 

Comparing the gradient descent with the grid search strategy, we see that because the gradient 

descent is no longer exponential in 𝑇, it makes graphs with larger number edge-types much 

more tractable.  

3.4 Distributed Search Strategies 

An algorithm for the weights recovery problem in the distributed setting follows immediately 

from 3.2 and 3.3. One can distribute the computation of each single PageRank using the 

Pregel framework, and run the search strategy in sequence. One slight improvement is to also 

perform a parallel sort on the weighted PageRank’s scores, which is needed for each 

evaluation of 𝑓 at each set of points. 

 

4. Simulation Results 

We run simulations on generated graphs for two main purposes. First, generating random 

graphs with known true weight vector 𝜔∗ reveals the extent to which our proposed structural 

estimation framework is at all justified. Second, varying structural parameters of the graph 

(e.g. number of edge types) provides experimental run time estimates, and hence perhaps 

insights into rate of convergence and time complexity issues. 

 

4.1 Weighted vs. Unweighted PageRank 

We evaluate the benefit of using weighted PageRank instead of its unweighted counterpart. 

We expect this benefit to be most significant if the true graph in general has high weights for 

edges going into a low in-degree vertex, and low weights for edges going into a high in-

degree vertex. 
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A graph with 600 vertices is generated randomly by assigning a fixed probability of a directed 

edge forming from one vertex to another in each graph. To maintain some structural control 

over the graphs, we assign the edge-types of the graph in the following manner. 

1. Sort the vertices by in-degrees, and assign each vertex a “vertex-type” by its quartile. 

2. For each vertex-type, define a probability distribution over the edge-types an edge 

may be assigned. For graphical reasons, we restrict to 3 edge-types. We skew the 

distribution in favor for edge-type 3 for vertex-type with large in-degrees and edge-

type 1 for vertex-type with small in-degrees. 

3. Assign each edge its edge-type by drawing from the distribution provided by its 

destination vertex. 

Next, we calculate the true weighted PageRank scores by providing three instances of the true 

weight vector 𝜔∗. Then we do a grid search for each using the true PageRank ordering 

without perturbing the scores by Gaussian noise. The three graph 𝑓1, 𝑓2, 𝑓3 are generated 

below. 

Because Gaussian noises are not included in this simulation, it is expected that we obtain the 

global minimum at the true weight vectors. This can be seen in the graphs that the minimum 

of the surface lies very close in the region where the true weight vector lies. What is 

surprising, however, is that these graphs are smooth and strictly convex. This could be due to 

the fact that each perturbation of the matrix is renormalized so that the matrix remains 

stochastic (and hence the largest eigenvalue λ1 is always 1 and is unique, which in turn 

guarantees the unique eigenvector that corresponds to this largest eigenvalue). Also, having a 

rank 1 teleporting matrix addition 
1−𝛿

𝑛
𝟙 may also improve the stability of the eigenvector 

calculation (in addition to bounding the second largest eigenvalue 𝜆2. 

 
 𝑓1: 𝜔∗ = (0.2, 0.3, 0.5)  𝑓2: 𝜔∗ = (0.33, 0.33, 0.34)  𝑓3: 𝜔∗ = (0.6, 0.3, 0.1) 

An interesting observation is that as the true edge-type weights gives higher emphasis on type 

1 edges (which, as dictated by the method of experiment described above), we observe that 
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the error obtained by using unweighted PageRank (where 𝜔1 = 𝜔2 = 0.33) increases 

significantly: when we have the true weight vector as 𝜔∗ = (0.6, 0.3, 0.1), the result from the 

unweighted PageRank and the weighted PageRank are most distinguishable. In other words, 

weighted PageRank are most valuable in terms of accuracy when we believe the value of 

scarcity—edges with destination vertices of high in-degrees are valued as lower link activities 

while edges with destination vertices of low in-degrees are valued as “rare” and hence more 

important link activities. If scarcity is expected, the unweighted PageRank will overvalue 

importance of nodes with high in-degrees and undervalue nodes with low in-degrees by 

assuming all edge weights are equal. 

 

4.2 Optimal Weights Retrieval 

The second simulation tests the robustness of the proposed algorithm in presence of Gaussian 

noises. Specifically, because in real life models only a noisy ordering of the PageRank scores 

can be observed, the effect of the permuted ordering due to these noises must be tested before 

a conclusion can be reached on whether it can be claimed that the optimal edge-type weight 

vector (obtained by minimizing the distance with respect to this noisy ordering) is in fact 

close to the true hidden weight vector.  

Again, as in section 4.1, edge types are first assigned to each edge. Then, we assign a true 

weight vector 𝜔∗ = (0.5714, 0.2857, 0.1429) ~ (
23+24

2
,

22+23

2
,

21+22

2
) . We run a Monte 

Carlo simulation and added Gaussian noises 100 times, with reasonable signal to noise ratio 

(choosing 𝜎𝜖 = 0.3𝑠𝑟∗ , where 𝑠𝑟∗  is the sample standard deviation of the true PageRank 

scores). Then, for each of the 100 simulations, we calculated the optimal weight vector that 

minimized 𝑓 using our numerical gradient descent algorithm. The histograms of the estimated 

optimal weights are presented below. 
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It is not surprising that there are fluctuations in the recovered optimal weight vector. The 

average optimal weight vector obtained is �̅�∗ = (0.5754, 0.2848, 0.1398) . The 95% 

confidence intervals from this Monte Carlo simulation are: 

95% CI for 𝜔1
∗: (0.5677, 0.5831) 

95% CI for 𝜔2
∗ : (0.2797, 0.2899)  

95% CI for 𝜔3
∗ : (0.1325, 0.1471)  

 

Recall that the true edge-type weight vector is 𝜔∗ = (0.5714, 0.2857, 0.1429). Hence, in 

the simulation, our 95% confidence interval using optimal weights Monte Carlo simulation 

covered the true weight vector. Hence, this suggests that the algorithm is robust under noisy 

PageRank orderings. In real-life data analysis, instead of trusting on result of one optimal 

weight vector, bootstrapping techniques can be used on the data to create a bootstrapping CI 

that gives an interval estimate of the true weight vector instead of a point estimate.  

 

4.3 Experimental Runtime Performance 

Finally, we present experimental runtime performance results for our numerical gradient 

descent algorithm.  (We use here a slightly different minimization objective – squared 

difference in PageRank scores rather than squared difference in PageRank order – because our 

Spark setup (4 laptop cores, 4 GB memory) was able to process the former metric, but not the 

latter, in a reasonable time for graphs of a size worth distributing.) Our analysis in 3.3.2 
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suggests that runtime should be linear in the number of parameters (i.e. edge type weights).   

This appears to be approximately true for simulated Erdos-Renyi random graphs with 600 

nodes, 20% edge creation probabilities, and base edge-type weights set equal to 1 for edge 

type 1, 2 for edge type 2, etc. 

 

 

5. Conclusion  

In this paper, we have described and evaluated a distributed approach for recovering graph 

edge-type weights that are revealed through orders generated by a specific type of influence 

propagation, Edge-Type Weighted PageRank.  Our preferred implementation combines 

numerical gradient descent with PageRank iterations using the Pregel framework.  In future 

work, we are interested in developing techniques to further enhance performance by 

improving convergence results, reducing the number of iterations, and considering more self-

communicative search strategies.  
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