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 Not all edges are created equal 

 Example: AngelList ($2.9+ billion) 
◦ Investors can follow a start-up (social link) 

◦ Investors can invest in a start-up (economic link) 

◦ What is the relative importance of a social link 
versus an economic link? 

 



 This paper attempts to recover edge weights 
that are revealed via the propagation of actual 
influence along a network 
◦ “What is the edge-type weight vector that best 

describes a graph, assuming influence operates as 
if characterized by Edge-Type Weighted PageRank?” 



 Edge-Type Weighted Graphs 

 Weighted PageRank 

 Structural Estimation 

 Algorithm 
◦ (Inner) PageRank Iterations (for given weight vector) 

◦ (Outer) Search Strategy (for optimal weight vector) 

 Experiments 



 

𝐺 = 𝑉, 𝐸(𝑒, 𝑡), 𝜔 ∈ 𝒢𝑤 
 

 𝑉 is the set of vertices with 𝑉 = 𝑛 

 𝐸 is the set of edges with 𝐸 = 𝑚 

 Each edge 𝑒 having a type attribute 𝑡 ∈ 𝒯 =
{1, 2, … , 𝑇} 

 𝜔 = (𝜔1, … , 𝜔𝑇) ∈ ℝ+
T  is the weight vector 



 

Weighted stochastic adjacency 
matrix A∈ ℝ𝑛×𝑛 

𝐴𝑗𝑖 =
𝑤𝑖𝑗

 𝑤𝑖𝑗𝑗
 where 𝑤𝑖𝑗 = 𝜔𝑡𝑖𝑗 is the weight for edge 𝑒𝑖𝑗, 

if 𝑒𝑖𝑗 ∈ 𝐸 (i.e. if 𝑣𝑖 → 𝑣𝑗), and 𝑤𝑖𝑗 = 0 if 𝑒𝑖𝑗 ∉ 𝐸 

 

Alternatively, we can write A as 

𝐴 = 𝜔1𝐵
1 +⋯+𝜔𝑇𝐵

𝑇 𝐶 
  where 𝐶𝑖𝑖 =  𝜔𝑡𝑡  𝐵 𝑡

𝑖𝑗𝑗  

 



 

 Find 𝑟 ∈ ℝn such that 𝑟 = (1 − 𝛿)/𝑛 + 𝛿𝐴𝑟 

 i.e -> Find the eigenvector corresponding to 
the eigenvalue 𝜆 = 1 for the matrix 𝑀 = 𝛿𝐴 +
1−𝛿

𝑛
𝟙 

 (Perron–Frobenius) on positive stochastic 
matrices 

 𝜆 = 1 is the unique largest eigenvalue of 𝑀 

 => Power Iterations 

 



 

 

ωopt = argmin
𝜔

 ℎ 𝑜𝑟𝑑𝑒𝑟 𝑃𝑅 𝐺 𝑉, 𝐸, 𝜔 , 𝑝∗  

 
  𝑝∗ = 𝑜𝑟𝑑𝑒𝑟(𝑃𝑅 𝐺 𝑉, 𝐸,𝜔∗ +𝒩 0, σϵ

2𝐼 ) 

  ℎ 𝑝1, 𝑝2 = 𝑝1 − 𝑝2 2 



 

 



 

 



 

 
Key results from simulations 
 

 The optimal weight vector 𝜔𝑜𝑝𝑡 that attains minimum of 𝑓 lies 
in close neighbourhood of true weight vector, 𝜔∗. 
 

 Albeit intractability to find closed-form of derivative, the 
function 𝑓 is convex and smooth (and at least piecewise 
continuous/convex for higher dimensions). 
 

 Weighted PageRanks perform better than unweighted 
PageRanks especially on graphs with high in-degree / low 
edge weights, low in-degree / high edge weights (see paper). 

 

 



𝜔∗ = (0.5714, 0.2857, 0.1429) 
95% CI for 𝜔1

∗ : [0.5677, 0.5831] 
95% CI for 𝜔2

∗  : [0.2797, 0.2899]  
95% CI for 𝜔3

∗  : [0.1325, 0.1471]  
 



Local Machine 

 Power iteration on 𝑀 
 2𝑛 − 1 𝑛 ~ 𝒪 𝑛2  per multiplication 

 Number of iterations:  

𝒪
log 1/𝜖 − 𝑐𝑐2/𝑐1 

log 1/𝜆2
 ~𝒪

log 1/𝜖  

log 1/𝛿
  

 

 because 𝑀𝑘𝑣 = 𝑐1(𝑟 +
𝑐2

𝑐1
𝜆2

𝑘𝑞2 +⋯+
𝑐𝑛

𝑐1
𝜆𝑛

𝑘𝑞𝑛 

 and by Haveliwala (2003)’s bound on 𝜆2 ≤ 𝛿 

 Smart update: 𝑣(𝑘) = (1 − 𝛿)/𝑛 + 𝛿𝐴𝑣(𝑘−1) 
 2𝑚 − 𝑛 ~ 𝒪 𝑚  per update 



Distributed using Pregel Framework 



Distributed using Pregel Framework, 𝐵 
machines, with combiners 

 

 Communication cost: 𝒪 min 𝑚, 𝑛𝐵  

 Reduce size for each key: 

◦ 𝒪 min max indegrees, 𝐵  
◦ Max in-degrees could be as bad as 𝒪 𝑚  

◦ On average, it is 𝒪 𝑚/𝑛  

 Number of supersteps: 𝒪 log 1/𝜖  



 

 Grid search 
𝒪 1/𝛼 𝑇𝑚 log 1/𝜖  

 

 Numerical gradient descent 
 
𝜔(𝑙+1) = 𝜔(𝑙) − 𝛾 𝛻𝑓 𝜔 𝑙  
 

𝜕𝑓

𝜕𝜔𝑡
𝜔 𝑙 =

𝑓 𝜔 𝑙 + 𝛼𝑒𝑡 − 𝛼𝑒𝑇 − 𝑓 𝜔 𝑙

𝛼
 

 

𝒪 𝑆𝑇 𝑚 log 1/𝜖 + 𝑛 log 𝑛 𝐿  



 Accuracy? 

 

 

 

 

 

 

 
N.B.: Experiments use a slightly different minimization 
objective – squared difference in PageRank scores rather 
than squared difference in PageRank order – because our 
laptop Spark setup (4 cores, 4 GB memory) was able to 
process the former metric, but not the latter, in a 
reasonable time for graphs of a size worth distributing. 



 Accuracy? 

 

 

 

 

 

 

 

Nodes Edges # Types Recovered Weights True Weights 

600 20% 2 .332, .668 .33, .67 

600 20% 4 .098, .199, .3, .4 .1, .2, .3, .4 

600 20% 2 .331, .669 .33+ϵ,.67+ϵ,

ϵ ~𝒩 0,
.1

 𝑤𝑖

2
 

2000 500 3 .165, .332, .503 .166, .333, .5 



 Runtime? 



Erdos-Renyi random graphs, 600 Nodes 



 Can recover edge-type weights accurately 

 Next steps 
◦ Dynamically changing PageRank tolerance 

◦ Look for direction in unit ball with small 𝜆2 



 


