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Introduction

» Not all edges are created equal
» Example: AngelList ($2.9+ billion)

> Investors can follow a start-up (social link)
> Investors can invest in a start-up (economic link)

- What is the relative importance of a social link
versus an economic link?




Goal

» This paper attempts to recover edge weights
that are revealed via the propagation of actual
influence along a network

- “What is the edge-type weight vector that best
describes a graph, assuming influence operates as
if characterized by Edge-Type Weighted PageRank?”




Overview

» Edge-Type Weighted Graphs
» Weighted PageRank

» Structural Estimation

» Algorithm

> (Inner) PageRank Iterations (for given weight vector)
> (Outer) Search Strategy (for optimal weight vector)

» EXperiments




Edge-Type Weighted Graphs

G=(V,E(e,t),w) €EGY

» V is the set of vertices with |V| =n

» E is the set of edges with |E| =m

» Each edge e having a type attributet € T =
{1,2,...,T}

» w = (wq, ..., wr) € RL is the weight vector




Edge-Type Weighted Graphs

Weighted stochastic adjacency
matrix Ae R™"

Aj; = zjvvi\fij where w;; = w,,; is the weight for edge e;;,
if e;; €E (i.e. if v, »vj),and w;; =0ife;; € E

Alternatively, we can write A as
A=(wBW + -+ wrBM)C
where ¢; =3, v, (3,[89],,)

tj




Weighted PageRank

» Find r € R™ such that r = (1 — §)/n + SAr

» i.e —> Find the eigenvector corresponding to
the eigenvalue 1 =1 for the matrix M = §A +

» (Perron-Frobenius) on positive stochastic
matrices

A =1 is the unique largest eigenvalue of M
=> Power lterations




Structural Estimation

Wopt = al‘gcznin h (order (PR(G(V, E, a)))) , p*)

y pt= order(PR(G(V, E,a)*)) + NV (0, 621))
» h(py,p2) = llpr — p2ll2




Structural Estimation - Simulation
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Structural Estimation - Simulation
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Structural Estimation - Simulation

Key results from simulations

» The optimal weight vector w,,, that attains minimum of f lies
in close neighbourhood of true weight vector, w*.

» Albeit intractability to find closed-form of derivative, the
function f is convex and smooth (and at least piecewise
continuous/convex for higher dimensions).

» Weighted PageRanks perform better than unweighted
PageRanks especially on graphs with high in-degree / low
edge weights, low in-degree / high edge weights (see paper).




Structural Estimation - Simulation
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Algorithm - PageRank Iteration

Local Machine

» Power iteration on M
- (2n—1)n ~ 0(n?) per multiplication
- Number of iterations:
, (log(l/e) — cCy/cq >~0 (log(l/e) )
log(1/4;) log(1/6)

because M*v = ¢, (r +Z—i(/12)kq2 + -+ Z_Z(An)kCIn
and by Haveliwala (2003)’s bound on [1,| <6
» Smart update: v = (1 - 8§)/n + §Av*—1
- 2m —n ~ O0(m) per update




Algorithm - PageRank Iteration

Distributed using Pregel Framework

Algorithm 1 PageRank
input: G : Graph[V, E])
while err > € do
for vertex i do
R[i] =0.15+0.85 Y MJj]
FEN; (i)
M i] = R[i]/|Nout|
Send M [i] to all Ny (i)
end for
err = |H — previousK)|

end while




Algorithm - PageRank Iteration

Distributed using Pregel Framework, B
machines, with combiners

» Communication cost: O(min(m,nB))
» Reduce size for each key:
> O(min(max indegrees, B))
- Max in—-degrees could be as bad as 0(m)
- On average, it is O(m/n)
» Number of supersteps: 0(log(1/¢))




Algorithm - Search Strategy

» Grid search
0((1/a)Tmlog(1/¢€))

» Numerical gradient descent
WD = O —y 7f(w®)

i(w(z)) _ f(a)(l) + aey — aeT) — f(w(l))
0wy a

O(ST(mlog(1/e) + nlogn)L)



Experiments

» Accuracy?

N.B.: Experiments use a slightly different minimization
objective - squared difference in PageRank scores rather
than squared difference in PageRank order - because our
laptop Spark setup (4 cores, 4 GB memory) was able to
process the former metric, but not the latter, in a
reasonable time for graphs of a size worth distributing.




Experiments

» Accuracy?

““ # Types | Recovered Weights True Weights

20% .332, .668 .33, .67
600 20% 4 098, .199, .3, .4 1,.2,.3, .4
600 20% 2 .331, .669 .33+€,.67+¢,

€~ (0, (Zjvi)z)

2000 500 3 .165, .332,.503 .166, .333, .5




Experiments

» Runtime?
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Conclusion

» Can recover edge-type weights accurately

» Next steps
- Dynamically changing PageRank tolerance
> Look for direction in unit ball with small 2,




Thank You!




