Distributed Structural Estimation of Graph Edge-Type Weights from Noisy PageRank Orders David Daniels, Eric Liu, Charles Zhang CME 323

Introduction

- Not all edges are created equal
- Example: AngelList (\$2.9+ billion)
 - Investors can follow a start-up (social link)
 - Investors can invest in a start-up (economic link)
 - What is the relative importance of a social link versus an economic link?

Goal

- This paper attempts to *recover* edge weights that are *revealed* via the propagation of actual influence along a network
 - "What is the edge-type weight vector that best describes a graph, assuming influence operates as if characterized by Edge-Type Weighted PageRank?"

Overview

- Edge-Type Weighted Graphs
- Weighted PageRank
- Structural Estimation
- Algorithm
 - (Inner) PageRank Iterations (for given weight vector)
 - Outer) Search Strategy (for optimal weight vector)
- Experiments

Edge-Type Weighted Graphs

$G=(V,E(e,t),\omega)\in \mathcal{G}^w$

- *V* is the set of vertices with |V| = n
- *E* is the set of edges with |E| = m
- Each edge e having a type attribute $t \in \mathcal{T} = \{1, 2, ..., T\}$
- $\omega = (\omega_1, \dots, \omega_T) \in \mathbb{R}^T_+$ is the weight vector

Edge-Type Weighted Graphs

Weighted stochastic adjacency matrix $A \in \mathbb{R}^{n \times n}$

 $A_{ji} = \frac{w_{ij}}{\sum_j w_{ij}}$ where $w_{ij} = \omega_{t_{ij}}$ is the weight for edge e_{ij} , if $e_{ij} \in E$ (i.e. if $v_i \to v_j$), and $w_{ij} = 0$ if $e_{ij} \notin E$

Alternatively, we can write A as $A = (\omega_1 B^{(1)} + \dots + \omega_T B^{(T)})C$ where $C_{ii} = \sum_t \omega_t (\sum_j [B^{(t)}]_{ij})$

Weighted PageRank

- Find $r \in \mathbb{R}^n$ such that $r = (1 \delta)/n + \delta Ar$
- i.e -> Find the eigenvector corresponding to the eigenvalue $\lambda = 1$ for the matrix $M = \delta A + \frac{1-\delta}{n} \mathbb{1}$
- (Perron-Frobenius) on positive stochastic matrices
 - $\lambda = 1$ is the unique largest eigenvalue of M
 - => Power Iterations

Structural Estimation

$$\omega_{\text{opt}} = \underset{\omega}{\operatorname{argmin}} h\left(order\left(PR(G(V, E, \omega))\right), p^*\right)$$

•
$$p^* = order(PR(G(V, E, \omega^*)) + \mathcal{N}(0, \sigma_{\epsilon}^2 I))$$

• $h(p_1, p_2) = ||p_1 - p_2||_2$

Key results from simulations

- The optimal weight vector ω_{opt} that attains minimum of f lies in close neighbourhood of true weight vector, ω^* .
- Albeit intractability to find closed-form of derivative, the function *f* is convex and smooth (and at least piecewise continuous/convex for higher dimensions).
- Weighted PageRanks perform better than unweighted PageRanks especially on graphs with high in-degree / low edge weights, low in-degree / high edge weights (see paper).

w_opt_x

Histogram of results\$y

 $\omega^* = (0.5714, 0.2857, 0.1429)$ 95% CI for ω_1^* : [0.5677, 0.5831] 95% CI for ω_2^* : [0.2797, 0.2899] 95% CI for ω_3^* : [0.1325, 0.1471]

Algorithm - PageRank Iteration

Local Machine

Power iteration on M

- $(2n-1)n \sim \mathcal{O}(n^2)$ per multiplication
- Number of iterations:

$$\mathcal{O}\left(\frac{\log(1/\epsilon) - cc_2/c_1}{\log(1/\lambda_2)}\right) \sim \mathcal{O}\left(\frac{\log(1/\epsilon)}{\log(1/\delta)}\right)$$

because $M^k v = c_1 (r + \frac{c_2}{c_1} (\lambda_2)^k q_2 + \dots + \frac{c_n}{c_1} (\lambda_n)^k q_n$ and by Haveliwala (2003)'s bound on $|\lambda_2| \le \delta$ Smart update: $v^{(k)} = (1 - \delta)/n + \delta A v^{(k-1)}$

• $2m - n \sim \mathcal{O}(m)$ per update

Algorithm - PageRank Iteration

Distributed using Pregel Framework

Algorithm 1 PageRank input: G : Graph[V, E]) while $err \ge \epsilon$ do for vertex i do $R[i] = 0.15 + 0.85 \sum_{j \in N_{in}(i)} M[j]$ $M[i] = R[i]/|N_{out}|$ Send M[i] to all $N_{out}(i)$ end for err = |R - previousR|end while

Algorithm - PageRank Iteration

Distributed using Pregel Framework, *B* machines, with combiners

- Communication cost: O(min(m, nB))
- Reduce size for each key:
 - $\mathcal{O}(\min(\max \text{ indegrees}, B))$
 - Max in-degrees could be as bad as $\mathcal{O}(m)$
 - On average, it is $\mathcal{O}(m/n)$
- Number of supersteps: $O(\log(1/\epsilon))$

Algorithm – Search Strategy

Grid search

 $\mathcal{O}((1/\alpha)^T m \log(1/\epsilon))$

Numerical gradient descent

$$\omega^{(l+1)} = \omega^{(l)} - \gamma \,\nabla f(\omega^{(l)})$$

$$\frac{\partial f}{\partial \omega_t} \left(\omega^{(l)} \right) = \frac{f \left(\omega^{(l)} + \alpha e_t - \alpha e_T \right) - f \left(\omega^{(l)} \right)}{\alpha}$$

 $\mathcal{O}(ST(m\log(1/\epsilon) + n\log n)L)$

Experiments

Accuracy?

N.B.: Experiments use a slightly different minimization objective – squared difference in PageRank scores rather than squared difference in PageRank order – because our laptop Spark setup (4 cores, 4 GB memory) was able to process the former metric, but not the latter, in a reasonable time for graphs of a size worth distributing.

Experiments

Accuracy?

Nodes	Edges	# Types	Recovered Weights	True Weights
600	20%	2	.332, .668	.33, .67
600	20%	4	.098, .199, .3, .4	.1, .2, .3, .4
600	20%	2	.331, .669	$.33 + \epsilon, .67 + \epsilon,$ $\epsilon \sim \mathcal{N}\left(0, \left(\frac{.1}{\sum w_i}\right)^2\right)$
2000	500	3	.165, .332, .503	.166, .333, .5

Experiments

Runtime?

Erdos-Renyi random graphs, 600 Nodes

Conclusion

- Can recover edge-type weights accurately
- Next steps
 - Dynamically changing PageRank tolerance
 - Look for direction in unit ball with small λ_2

Thank You!