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1 Introduction

The classic stable marriage (SM) problem can be stated as below: Given n men and n women,
where each person has ranked all members of the opposite sex with a unique number between
1 and n in order of preference, marry the men and women together such that there are no two
people of opposite sex who would both rather have each other than their current partners. If
there are no such people, all the marriages are “stable”. Gale and Shapley gave their famous
deferred acceptance algorithm in 1962 which always finds a stable matching [4].

When the preference lists are incomplete and/or have ties, the problem becomes more chal-
lenge (called Stable Marriage with Incomplete List and Ties, SMTI). For SMTI, the GS
algorithm still finds a stable matching. However, in this case, we are usually interested in
finding a stable matching with maximum size. While the matching size of the GS algorithm
is at least half of the optimal matching size, a modified version of the GS algorithm was
proposed to guarantee 2/3 of the optimal matching size [3].

Algorithms for finding solutions to the stable marriage problem have applications in a variety
of real-world situations. A well known example is in the assignment of graduating medical
students to their first hospital appointments. In 2012, the Nobel Prize in Economics was
awarded to Lloyd S. Shapley and Alvin E. Roth for the theory of stable allocations and the
practice of market design [1].

In this report we will introduce the modified version of the GS algorithm and our implemen-
tation using Spark [2].

2 Stable Marriage and the GS Algorithm

The GS (Gale and Shapley) algorithm involves a number of iterations of proposals, accep-
tance and rejection. In each iteration,

1. each unengaged man proposes to the most-preferred woman to whom he has not yet
proposed (regardless of whether the woman is already engaged), and then
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2. each woman gets engaged to the proposer she most prefers (her existing fiance or
someone else) and rejects the rest (perhaps including her current fiance).

The runtime complexity of this algorithm is O(n2) where n is number of men or women.

Below is the pseudocode for the GS algorithm.

Algorithm 1 The Gale Shapley Algorithm

Initialize all m and w to free
while there is a free m who has non-empty list do

w = top in the list
if w is free then

mw engage
else

Some m′w already engaged
if w prefers m to m′ then

mw engage, m′ becomes free
Remove w from m′’s list

else
m′w remain engaged, remove w from m’s list

end if
end if

end while

3 MAX-SMTI and Modified GS Algorithm

When the preference lists of the men and women can be incomplete and can have ties, not
everybody will necessarily get married at the end of the GS algorithm. In fact, the GS
algorithm takes O(|E|) time complexity to complete on a single machine where E is the set
of edges in the bipartite graph of men and women. And the GS algorithm guarantees the
resulting matching size is at least half of the optimal matching size.

A modified GS algorithm was proposed to achieve better matching size with the same time
complexity. The details can be found in [3]. Here we only outline the main modifications to
the basic GS algorithm:

• The preference list of each un-engaged man will be traversed twice before the man
stops proposing.

• A man will prefer un-engaged women to engaged women if they have the same priority
in his preference list.

• If a women’s fiance has a women in his preference list who he actually prefers to her,
she will always accept a new proposal. And when her current fiance gets rejected from
her, he will not remove her from his list in this case.
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With these modifications, the new algorithm can actually guarantee at least 2/3 of the
optimal matching size [3].

4 Distributed Algorithm for SMTI

Given the single-machine algorithms for solving SM and SMTI problems, now we propose
their distributed versions. We begin with a description of the distributed data structure we
use. As the Modified GS algorithm for SMTI is a variant of the basic GS algorithm, we
first describe the distributed basic GS algorithm, and then we outline the difference of the
modified GS algorithm. We will use the word “proposer” and “acceptor” instead of man and
woman in the following sections.

4.1 Data Structures

To scale with the problem size, i.e., the number of proposers and acceptors, we need to
represent their data structures in a distributed way, by using distributed collections (RDDs in
Spark). The data for each proposer or acceptor include his/her preference list, and necessary
status for engaged or single. Note that while the status is O(1), the preference list can be
long, in the worst case O(n), and may not fit in one single machine. However, for most
real SMTI problems, the preference list is incomplete and sparse, i.e., each person may only
specify the rank for a few other people he is interested in. Thus the preference list is usually
much shorter than n, and is able to fit in a single machine.

4.2 Distributed Basic GS Algorithm

4.2.1 Algorithm description

As previously described, the basic GS algorithm iterates over each active single proposer
to propose to his current favorite acceptor. To make this algorithm parallel, first we let all
the active single proposers send their proposals to their favorite acceptors simultaneously in
each iteration. Each acceptor will then receive none, one, or more than one proposals. The
acceptor picks up the highest-ranked proposal according to her preference list and compares
with her current fiance, to choose the new fiance. The other proposals are all rejected.

Note that the original basic GS algorithm does not require a particular order for the pro-
posers. This gives the freedom to the acceptors to handle the received proposals in any
order, as long as they pick the highest-ranked one. Therefore proposing simultaneously is
equivalent to proposing serially and will obtain the same result as the original algorithm.

After the proposing phase, the acceptors need to announce their decisions and current status
to the proposers. This is being done in the responding phase, where each acceptor sends re-
sponse to her current fiance (if there is one). The proposers who receive responses know they
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are engaged, either by proposing successfully or by keeping the relation. The proposers who
do not receive responses are single, either by breaking up or by failed proposing. Therefore
they can update their status based on the responses.

Algorithm 2 sketches the complete algorithm scheme for the distributed GS algorithm.

Algorithm 2 Distributed GS algorithm scheme

Initialize proposers and acceptors
while there are active proposers do

. Proposing phase
proposals = proposers.makeProposals()
acceptors.handleProposals(proposals)
. Responding phase
responses = acceptors.makeResponse()
proposers.handleResponses(responses)

end while

4.2.2 Complexity analysis

It is easy to see that there are two rounds of communication happen in each iteration. As
each proposer/acceptor can at most make one proposal/response, the communication cost is
O(n). Since engaged and inactive proposers do not make proposals, and single acceptors do
not make responses, O(n) is the upper bound. In fact as most proposers will become engaged
after a few iterations, the communication cost drops rapidly after the first few iterations.

The maximum reduce size (the maximum number of proposals/responses each person re-
ceives) is limited by the length of the preference list. As we discussed before, the preference
list is usually short, thus it will not become a bottleneck in real problems.

4.3 Distributed Modified GS Algorithm

The modified GS algorithm for SMTI problem uses the same scheme as in Algorithm 2.
The only difference is in how proposers/acceptors updates their status and how they make
proposals/responses, according to the algorithm difference highlights in Section 3. Among
the three points, the first one is easy to modified as it only involves local operations. The
other two require status cross-check between proposer and acceptor, so we need additional
messages.

• For the second point, acceptor who is not engaged will send a special “response” to all
proposers in her list to announce her singleness, in order to let proposers distinguish
between single and engaged acceptors. This only adds moderate cost, as discussed
before that most acceptors will be engaged after the first few iterations.
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Listing 1: GS algorithm scheme

while ( hasActiveProposers ) {

// Proposing phase

val proposals = proposers

.flatMap( makeProposal )

.groupByKey()

.cache()

acceptors = acceptors

.leftOuterJoin(proposals)

.mapValues( handleProposal )

.cache()

// Responding phase

val responses = acceptors

.flatMap( makeResponse )

.groupByKey()

.cache()

proposers = proposers

.leftOuterJoin(responses)

.mapValues( handleResponse )

.cache()

}

• For the third point, proposer who satisfies the condition (i.e., has an acceptor in his
list who he prefers to his fiancee) will also send a special “proposal” to his fiancee to
announce this information. Note that in the basic algorithm he does not need to send
proposal, so each proposer still sends at most one proposal.

To summarize, the distributed modified GS algorithm only adds moderate communication
cost to the basic algorithm. In average the complexity keeps the same.

5 Implementation

We implement both the distributed basic GS algorithm and the distributed modified GS
algorithms in Spark. The pseudocode is shown in Listing 1. It directly follows the algorithm
scheme in Algorithm 2.

An interesting discussion is whether we can use Pregel API [5] to implement the GS algorithm
scheme. The two groups of people form a (sparse) bipartite graph with edges as relations
in their (incomplete) preference lists, and the proposing and responding phases are similar
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to the scatter-gather communication pattern. Pregel provides a simple API to implement
graph algorithms, and also it handles partitioning better to reduce communication between
RDD partitions. However, we finally decide to write our own implementation due to the
following reasons. First, proposers and acceptors have different attributes. Second, at most
time each person (vertex) only sends message along one edge in each iteration, where Pregel
by default supports sending messages along all edges, which is an overkill for us and may have
more communication cost. Third, we have two rounds of message passing in one iteration in
reverse direction, which is hard to distinguish in Pregel.

Another issue with the iterative algorithms in Spark is the long lineage of RDDs. Spark
guarantees fault-tolerance for RDDs. As in each iteration we generate new RDDs from the
previous RDDs, the dependency lineage keeps growing. To break this dependency, we use
checkpointing. We empirically find that after about 20 iterations, the program becomes
obviously slower due to the dependency lineage overhead. Thus, we checkpoint every 20
iterations. After the checkpoint, the program runs at regular speed.

6 Experiments

We evaluate our distributed modified GS algorithm locally on a dual-socket server machine,
which has 12 physical cores and supports 24 threads in total. The dataset we use is a random-
generated public dataset (1000 men vs. 1000 women) [6]. The algorithm takes about 700
iterations to complete. We run the algorithm for 10 iterations for 3 times, and report the
average execution time.

Figure 1 shows the performance scaling with number of working threads using fixed 64 RDD
partitions. This keeps the communication between partitions unchanged. We can see that
the performance scales very well up to 8 to 16 threads.

Figure 2 shows the same performance numbers, but with number of partitions equal to num-
ber of working threads. We can see now as more partitions are used, the communication cost
increases significantly and overweight the parallelism performance gain. The GS algorithm is
a high-communication algorithm. To improve the scalability, better algorithms are needed.

7 Conclusion

Stable marriage is a famous problem with wide applications. When the preference lists are
incomplete and/or have ties, it becomes more challenging, and algorithms must also optimize
for maximum marriage size. Kiraly proposed an algorithm which modified the original Gale-
Shapley algorithm, and gave the state-of-the-art quality as 2/3 of the optimal marriage
size. We implement both the basic GS algorithm and Kiraly’s algorithm in a distributed
environment using Spark. The communication cost and the reduce size are both moderate.
We also test the implementation locally and see reasonable scaling performance.
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Figure 1: Performance scaling with fixed number of RDD partitions.

Figure 2: Performance scaling with same number of RDD partitions as number of threads.
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