
Spark SMTI

Yilong Geng,
Mingyu Gao

Background

GaleShapley
Algorithm

Distributed
SMTI

Implementation
on Spark

Performance

End

Distributed Stable Marriage
with Incomplete List and Ties

using Spark

Yilong Geng Mingyu Gao

Stanford University

{gengyl08,mgao12}@stanford.edu

June 1, 2015

1 / 12

Spark SMTI

Yilong Geng,
Mingyu Gao

Background

GaleShapley
Algorithm

Distributed
SMTI

Implementation
on Spark

Performance

End

Overview

1 Background

2 GaleShapley Algorithm

3 Distributed SMTI

4 Implementation on Spark

5 Performance

6 End

2 / 12

Spark SMTI

Yilong Geng,
Mingyu Gao

Background

GaleShapley
Algorithm

Distributed
SMTI

Implementation
on Spark

Performance

End

Marriage Problem

3 / 12

Spark SMTI

Yilong Geng,
Mingyu Gao

Background

GaleShapley
Algorithm

Distributed
SMTI

Implementation
on Spark

Performance

End

Stable Marriage with Incomplete list and Ties
(SMTI)

Blocking Pair

A pair mw is blocking M, if mw ∈ E\M (they are an
acceptable pair and they are not matched) and

w is not engaged or strictly prefers m to her fiance, and

m is not engaged or strictly prefers w to his fiancee.

Stable

A marriage is called stable if there is no blocking pair.

Incomplete list and Ties

Preference list can be incomplete, and/or have ties

Our goal: find a stable marriage with maximum marriage size

4 / 12

Spark SMTI

Yilong Geng,
Mingyu Gao

Background

GaleShapley
Algorithm

Distributed
SMTI

Implementation
on Spark

Performance

End

Basic GS Algorithm

1: Initialize all m and w to free
2: while there is a free m who has non-empty list do
3: w = top in the list
4: if w is free then
5: mw engage
6: else
7: Some m′w already engaged
8: if w prefers m to m′ then
9: mw engage, m′ becomes free
10: Remove w from m′’s list
11: else
12: m′w remain engaged, remove w from m’s list
13: end if
14: end if
15: end while

Single machine complexity: O(e)

Result size ≥ 1
2 of the maximum size

5 / 12

Spark SMTI

Yilong Geng,
Mingyu Gao

Background

GaleShapley
Algorithm

Distributed
SMTI

Implementation
on Spark

Performance

End

Modified GS for SMTI

Zoltan Kiraly, Linear Time Local Approximation Algorithm
for Maximum Stable Marriage.

Key modification

Men will go through his list twice
Break tie with the current status of the men and women

Single machine complexity: O(e)

Result size ≥ 2
3 of the maximum size

6 / 12

Spark SMTI

Yilong Geng,
Mingyu Gao

Background

GaleShapley
Algorithm

Distributed
SMTI

Implementation
on Spark

Performance

End

Distributed Modified GS

Preference list length is usually much shorter than n.

Proposers (men) and acceptors (women) are represented
in RDD, including their preference lists.

In each iteration, all proposers will propose simultaneously,
and acceptors pick the best proposals.

Communication complexity: O(n) per iteration.

Single worker reduce complexity: maximum list length.

7 / 12

Spark SMTI

Yilong Geng,
Mingyu Gao

Background

GaleShapley
Algorithm

Distributed
SMTI

Implementation
on Spark

Performance

End

Use Pregel?

Two groups of people form a (sparse) bipartite graph, with
(incomplete) preference lists as edges

Advantages

Pregel handles partitioning better
Simple API

Problems

Different attributes for proposers/acceptors
Each vertex only sends message along one edge in each
iteration
Two rounds of message transfer in one iteration

8 / 12

Spark SMTI

Yilong Geng,
Mingyu Gao

Background

GaleShapley
Algorithm

Distributed
SMTI

Implementation
on Spark

Performance

End

Pseudocode

do {

// Proposers --> acceptors

val proposals = proposers.filter(isActive)

.map(makeProposal).groupByKey()

.cache()

acceptors = acceptors.leftOuterJoin(proposals)

.mapValues(handleProposal)

.cache()

// Acceptors --> proposers

val responses = acceptors

.map(makeResponse)

.cache()

proposers = proposers.leftOuterJoin(responses)

.mapValues(handleResponse)

.cache()

} while (hasActiveProposers)

9 / 12

Spark SMTI

Yilong Geng,
Mingyu Gao

Background

GaleShapley
Algorithm

Distributed
SMTI

Implementation
on Spark

Performance

End

Performance Scaling

With fixed number of RDD partitions (64 partitions)

10 / 12

Spark SMTI

Yilong Geng,
Mingyu Gao

Background

GaleShapley
Algorithm

Distributed
SMTI

Implementation
on Spark

Performance

End

Performance Scaling

With number of RDD partitions equal to number of threads

11 / 12

Spark SMTI

Yilong Geng,
Mingyu Gao

Background

GaleShapley
Algorithm

Distributed
SMTI

Implementation
on Spark

Performance

End

Thanks!
https://github.com/gaomy3832/spark-smti

12 / 12

https://github.com/gaomy3832/spark-smti

	Background
	Galeâ•ﬁShapley Algorithm
	Distributed SMTI
	Implementation on Spark
	Performance
	End

