
Parallelized Union Find Set, with an Application in Finding

Connected Components in a Graph

Zi Yin
Zhiang Hu (Harvy)

June 2, 2015

1 Background

1.1 Union Find Set

Union find set is a data structure that manages disjoint subsets. It can be constructed using
a linked forest. Each node will have a pointer pointing to its parent, and the root node’s
parent will be itself.
The union find set supports two operation:

1. Find. The find operation will return the root of the node being requested. Since each
node keeps a pointer to its parent, the algorithm will trace upward along the tree and
find the node with itself as its parent, which is the root node.
An optimization called path compression can be performed to flatten the tree. When
finding the root of a node, we can set the parents of the nodes along the way directly as
the root node. Hence the depth of the tree is reduced which decreases the time needed
for the next find request. Below is the subroutine for find:

function find(x){

if (x.parent != x){

x.parent = find(x.parent)

}

return x.parent

}

Figure 1: Illustration of a union find set, image courtesy to Mark C. Chu-Carroll

1

2. Union. When there is a request to union the sets containing node x and node y, the
algorithm first find the roots of x and y. If the root of x is different from the root of
y, one of their parent will be set to the other.
An optimization called union by rank can be performed. Each root will keep the current
depth of the tree, which is called the rank. When performing a union operation, the
root with lower rank will be merged to the one with higher rank. In the illustration
above, to merge the set on the left to the set in the middle, the parent of node P will
be set to node J . Below is the subroutine for union:

function union(x, y){

root_x = find(x)

root_y = find(y)

if (root_x != root_y){

if (root_x.rank > root_y.rank){

root_y.parent = root_x

}

else if (root_x.rank < root_y.rank){

root_x.parent = root_y

}

else{

root_x.parent = root_y

root_y.rank = root_y.rank + 1

}

}

2 Distributed Algorithm

We are going to construct a union find set on a graph G = (V,E), with n = |V | and m = |E|.
We assume that the number of nodes n fits in a single machine’s memory but the number
of edges m does not. So we are going to distribute the edges onto k machines, and at the
same time each machine will have a copy of the nodes V . Each subset will be a connected
component.

At the beginning the parent of each node will be itself. Then we loop through the edges.
At each time, the subsets containing the two endpoints of an edge will be merged. On a
single machine, this algorithm finishes after going through the edge set once. So the time
complexity is approximately O(m).

In distributed settings, find operation can be done in parallel on different machines, since
the operations won’t interfere with each other, even with path compression. The tricky
part is the union operation. Since the algorithm is now distributed, it is possible that
simultaneously tow machines will set the parent of a root node to two different roots when
performing two union requests. So the algorithm should be designed carefully to prevent
this from happening.
Below we describe how to do union function in parallel setting. The input is m request
(ui, vi) meaning that set containing node ui and set containing node vi should be unioned.

while there are unprocessed merge request {

Step 1: for each merge request (u,v){

Ru = find(u), Rv = find(v);

if (Ru != Rv) emit root merge request (Ru,Rv)

2

}

Step 2: (Construct Graph) {

2.1: Reduce duplicated root merge request into one,

and emit distinct edges of merging roots

2.2: (Set proper direction of the root merging graph) {

2.2.1 {

For each root merging edge (Ru, Rv), set an arbitary direction, say Ru -> Rv

Report number of roots with outer degree at least 1, denote as N1

}

2.2.2 {

Reverse the root merging edge directions in 2.2.1,

report number of roots with outer degree at least 1, denote as N2

}

Use the final root direction as 2.2.1 if N1>N2, otherwise, set direction as 2.2.2

}

}

Step 3: (Merge roots) {

For each root R with outer degree at least 1 {

pick up an arbitrary out going edge (R,R0), set Parent(R) <- R0

emit all other out going edges of R (R,R1)..(R,Rk) ...

as unmerged request input to Step 1 in next iteration

}

}

}

3 Analysis

3.1 Parallelized Find

Find can be done in embarrassing parallel since the result change of parent in path compres-
sion is to change the parent to the same value, i.e. the node’s current root. The amortized
time for find operation can still be viewed as O(1) because of the path compression. If n
fits in memory, the look up can be done in local machine and the updates of parent pointer
need be communicated with a all to all communication with shuffle size O(mi) where mi is
the number of unhandled request at iteration i.

3.2 Root Merging Graph construction

First we need to reduce the duplicated root merging requests. This can be done by a simple
map reduce round. The shuffle size of this step is O(mi) where mi is the number of unhan-
dled merging request at iteration i. The time complexity of this step is O(mk).

Then, We can construct the graph. Although it can be proven that a graph with edge
direction that low degree node goes to high degree node can guarantee that at least half of
nodes, we present a simpler version of constructing the graph in this report. As shown in the
algorithm, first for each edge in the root merge graph, set an arbitrary direction, then count
number of roots with outer degree at least 1 denote as N1, then reverse the direction and
count the non-zero outer degree roots as N2. Pick the direction with higher number and this
guarantees that at least half of nodes have outer degree at least 1. This is because, suppose
N1 is less than half of the engaging roots, then we have in the first graph there are at least
half of engaged roots (roots with non-zero degree) have outer degree zero; by reversing the

3

direction of edges we can have these outer degree zero nodes to be non-zero outer degree.
Therefore at least one of N1 and N2 is larger than half of engaged root number. This step
also has shuffle size O(mi + n) and time complexity O(mk + n

k).

3.3 Merge

The time complexity of this step is O(min (mk , n
k)), and shuffle size for updating parent is

O(n), for unhandled requests is O(mi), thus total shuffle size of this step is O(n+mi).

3.4 Complexity

First we should notice that the problem size of engaged roots are reduced by at least half
after each iteration.

1. Time Complexity
As analysed before the total time complexity for each iteration is O(mi+n

k). And thus
the total time is O(mk logm), since we have m > n.

2. Shuffle Size and Communication
For each step the total shuffle size is O(mi+n), therefore the total shuffle size is O((m+
n) logm). The communication happened in each iteration is all to all communication

3.5 Comparison

As can be seen, the algorithm is off the optimal O(mk) by a fraction of logm because of the
constraint that one root can only change its parent to at most one other root during one
iteration, which is the price we need to pay when information is distributed across many
different machines.
Remember the distributed algorithm for finding connected components talked during the
lecture has time complexity O(mk)diam(G). The guarantee for this algorithm does not de-
pend on the particular graph structure and hence is more stable. It can be faster when
log(m) < diam(G), which is not the rare case. For example, when the graph is a path, the
new algorithm can be exponentially faster O(log(m)) versus O(m).

4

